How To Identify Hidden Markov Models An Algebraic Statistical Answer

Alexander Schönhuth

Department of Mathematics UC Berkeley

March 2010

Guideline

Introduction

Hidden Markov Chains Identifiability

Algebraic Statistics

The Hidden Markov Model The Matrix Markov Model Differences

The Main Theorem

The Hankel Matrix Invariants

Outlook

Hidden Markov Chains

- Initial probabilities $\pi = (0.8, 0.2)^T$
- Transition probabilities

$$M = (m_{ij} := P(j \to i))_{i,j=1,2}$$

= $\begin{pmatrix} 0.3 & 0.5 \\ 0.7 & 0.5 \end{pmatrix}$

• Emission probabilities, e.g. $E_{1b} = 0.5$, $E_{2c} = 0.45$.

Random source (X_t) with values in $\Sigma = \{a, b, c\}$:

e.g.:
$$P_X(X_1 = a, X_2 = b) = \pi_1 e_{1a}(a_{11}e_{1b} + a_{12}e_{2b}) + \pi_2 e_{2a}(a_{21}e_{1b} + a_{22}e_{2b})$$

Alternative Formulation

- Initial probabilities $\pi = (0.8, 0.2)^T$
- Transition probabilities

$$M = (m_{ij} := P(j \to i))_{i,j=1,2}$$
$$= \begin{pmatrix} 0.3 & 0.5 \\ 0.7 & 0.5 \end{pmatrix}$$

Emission probabilities,
 e.g. E_{1b} = 0.5, E_{2c} = 0.45.

Alternative formulation: Let

$$T_{V} := M \begin{pmatrix} E_{1V} & 0 \\ 0 & E_{2V} \end{pmatrix}, V = a, b, c$$

then

$$P_X(X_1=v_1,...,X_n=v_n)=\langle \binom{1}{1}|T_{v_n}\cdot...\cdot T_{v_1}|\binom{\pi_1}{\pi_2}\rangle.$$

[Blackwell and Koopmans, 1957]

- Identifiability Problem: When do two HMMs give rise to equivalent processes?
 Solutions:
 - Ito, Amari, Kobayashi (1992): exponential runtime
 - AS (2008): linear runtime
- When is a process due to an HMM? Solution:
 - Heller (1965): characterization of no practical use
- Remark: Hidden Markov process on d hidden states is uniquely determined by its distribution on strings of length 2d 1.

e Main Theorem

00

Identifiability of HMMs [Blackwell and Koopmans, 1957]

- Identifiability Problem: When do two HMMs give rise to equivalent processes?
 Solutions:
 - Ito, Amari, Kobayashi (1992): exponential runtime
 - AS (2008): linear runtime
- When is a process due to an HMM? Solution:
 - Heller (1965): characterization of no practical use
- Remark: Hidden Markov process on d hidden states is uniquely determined by its distribution on strings of length 2d 1.
- Question of practical relevance: when is a distribution on strings of length n induced by an HMM with at most Γⁿ/₂] hidden states?
- If so, how many are there?
- · Algebraic statistics can give answers!

Algebraic Statistical Models

The Hidden Markov Model

Definition: Hidden Markov Model for d hidden states and strings of length n over the Σ :

$$\begin{array}{cccc} \mathbf{f}_{n,d}: & \mathbb{C}^{d(d-1)+d|\Sigma|} & \longrightarrow & \mathbb{C}^{|\Sigma|^n} \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\$$

where $\pi, \mathbf{1} = (1, ..., 1)^T \in \mathbb{C}^d$, $M, O_a \in \mathbb{C}^{d^2}$ such that

$$\mathbf{1}^{T}M = \mathbf{1}^{T}$$

$$(O_{a})_{ij} = \begin{cases} E_{ia} & i = j \\ 0 & i \neq j \end{cases}, \quad \sum_{a} O_{a} = \mathrm{Id}.$$

Wanted: Equations describing

$$\overline{\text{im}\left(\mathbf{f}_{n,d}\right)}$$

•0

Algebraic Statistical Models

The Matrix Markov Model

Definition: Matrix Markov Model of rank *d* for strings of length *n*

where $\mathbf{1}^T(\sum_a T_a) = \mathbf{1}$.

Algebraic Statistical Models

The Matrix Markov Model

Definition: Matrix Markov Model of rank *d* for strings of length *n*

$$\mathbf{g}_{n,d}: \quad \begin{array}{ccc} \mathbb{C}^{|\Sigma|d^2} & \longrightarrow & \mathbb{C}^{|\Sigma|^n} \\ ((T_a)_{a \in \Sigma}), \pi) & \mapsto & (\langle \mathbf{1} | T_{V_n} ... T_{V_1} | \pi \rangle)_{V = V_1} ... V_n \in \Sigma^n. \end{array}$$

where $\mathbf{1}^T(\sum_a T_a) = \mathbf{1}$.

Reminder: Hidden Markov Model on d hidden states for strings of length n

Hence

$$\operatorname{im}\left(\mathbf{f}_{n,d}\right)\subset\operatorname{im}\left(\mathbf{g}_{n,d}\right).$$

Matrix Markov Model

Lemma: Let $S: \mathbb{C}^d \to \mathbb{C}^d$ be an isomorphism such that $\mathbf{1}^T S = \mathbf{1}^T$ and

$$T'_a := S^{-1}T_aS$$
$$x' := S^{-1}x.$$

Then

$$\mathbf{g}_{n,d}((T_a)_{a\in\Sigma},\mathbf{x})=\mathbf{g}_{n,d}((T_a')_{a\in\Sigma},\mathbf{x}')$$

Theorem: Let n > 2d - 1.

$$\dim \overline{\operatorname{im}} \, \overline{\mathbf{g}_{n,d}} = (|\Sigma| - 1)d^2 + d.$$

Differences

The Strassen Condition

Lemma: Equivalent statements:

(i)

$$\mathbf{g}_{n,d}((T_a)_{a\in\Sigma},x)\in\operatorname{im}\mathbf{f}_{n,d}$$

(ii) [Strassen Condition]

$$\forall a, b, c \in \Sigma : (T_a)^{-1} T_c(T_b)^{-1} = (T_b)^{-1} T_c(T_a)^{-1}.$$

Remark: The Strassen Condition reflects that

$$T_c(T_a)^{-1}, T_c(T_b)^{-1}$$

are simultaneously diagonalizable.

The Main Theorem
0
00

Differences The Strassen Condition

Lemma: Equivalent statements:

(i)

$$\mathbf{g}_{n,d}((T_a)_{a\in\Sigma},x)\in\operatorname{im}\mathbf{f}_{n,d}$$

(ii) [Strassen Condition]

$$\forall a, b, c \in \Sigma : (T_a)^{-1} T_c(T_b)^{-1} = (T_b)^{-1} T_c(T_a)^{-1}.$$

Remark: The Strassen Condition reflects that

$$T_c(T_a)^{-1}, T_c(T_b)^{-1}$$

are simultaneously diagonalizable.

Corollary:

$$\Sigma = \{a, b\} : \overline{\operatorname{im} \mathbf{f}_{n,d}} = \overline{\operatorname{im} \mathbf{g}_{n,d}}$$

since (ii) trivially satisfied for binary alphabet $\Sigma = \{a, b\}$.

Main Theorem The Hankel Matrix

• Let $v \in \Sigma^n$. Write

$$p(v = v_1...v_n)$$

:= $\mathbb{P}(X_1 = v_1, ..., X_n = v_n)$.

for stochastic process (X_t) .

Write

$$uv = u_1...u_mv_1...v_n \in \Sigma^{m+n}$$

for concatenation of $u = u_1...u_m \in \Sigma^m$ and $v = v_1...v_n \in \Sigma^n$.

Main Theorem

The Hankel Matrix

• Let $v \in \Sigma^n$. Write

$$p(v = v_1...v_n)$$
:= $\mathbb{P}(X_1 = v_1, ..., X_n = v_n)$.
for stochastic process (X_t) .

Write

$$uv = u_1...u_m v_1...v_n \in \Sigma^{m+n}$$

for concatenation of $u = u_1...u_m \in \Sigma^m$ and $V = V_1 ... V_n \in \Sigma^n$.

 Consider the (infinite-dimensional) Hankel matrix

$$\mathcal{P}_p := [p(uv)]_{u,v \in \Sigma^*} \in \mathbb{R}^{\Sigma^* \times \Sigma^*}.$$

• Example ($\Sigma = \{0, 1\}$):

$$\mathcal{P}_{p} = \begin{pmatrix} p(\square) & p(0) & p(1) & \dots \\ p(0) & p(00) & p(10) & \dots \\ p(1) & p(01) & p(11) & \dots \\ p(00) & p(000) & p(100) & \dots \\ p(01) & p(001) & p(101) & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

Main Theorem

The Hankel Matrix

• Let $v \in \Sigma^n$. Write

$$p(v = v_1...v_n)$$

:= $\mathbb{P}(X_1 = v_1, ..., X_n = v_n)$.

for stochastic process (X_t) .

Write

$$uv = u_1...u_mv_1...v_n \in \Sigma^{m+n}$$

for concatenation of $u = u_1...u_m \in \Sigma^m$ and $v = v_1...v_n \in \Sigma^n$.

 Consider the (infinite-dimensional) Hankel matrix

$$\mathcal{P}_{p} := [p(uv)]_{u,v \in \Sigma^{*}} \in \mathbb{R}^{\Sigma^{*} \times \Sigma^{*}}.$$

• Example ($\Sigma = \{0, 1\}$):

$$\mathcal{P}_{p} = \begin{pmatrix} p(\square) & p(0) & p(1) & \dots \\ p(0) & p(00) & p(10) & \dots \\ p(1) & p(01) & p(11) & \dots \\ p(00) & p(000) & p(100) & \dots \\ p(01) & p(001) & p(101) & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

Remark: For *p* hidden Markov process on d hidden states:

$$\operatorname{rk} \mathcal{P}_{\mathcal{P}} \leq \mathbf{d}$$
.

Main Theorem Set Theoretic Lemma

Lemma: Let $n \ge 2d - 1$. Then the following statements are equivalent:

$$(p(v))_{v \in \Sigma^n} \in (\operatorname{im} \mathbf{g}_{n,d} \setminus \operatorname{im} \mathbf{g}_{n,d-1}) \tag{1}$$

•0

(i)

$$\operatorname{rk} \mathcal{P}_{p,d-1,d-1} = \operatorname{rk} \mathcal{P}_{p,\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil} = \mathcal{P}_{p,\lceil \frac{n}{2} \rceil, \lfloor \frac{n}{2} \rfloor} = d \tag{2}$$

.0

Main Theorem

Lemma: Let $n \ge 2d - 1$. Then the following statements are equivalent:

(ii)
$$\operatorname{rk} \mathcal{P}_{p,d-1,d-1} = \operatorname{rk} \mathcal{P}_{p,\lfloor \frac{n}{2}\rfloor,\lceil \frac{n}{2}\rceil} = \mathcal{P}_{p,\lceil \frac{n}{2}\rceil,\lceil \frac{n}{2}\rceil} = d \tag{2}$$

Example: n = 4, d = 2

$$\mathcal{P}_{p,4,2} = \begin{pmatrix} p(\square) & p(0) & p(1) & p(00) & p(01) & p(10) & p(11) \\ p(0) & p(00) & p(10) & p(000) & p(010) & p(100) & p(110) \\ p(1) & p(01) & p(11) & p(001) & p(011) & p(101) & p(111) \\ p(00) & p(000) & p(100) & p(0000) & p(0100) & p(1000) & p(1100) \\ p(01) & p(001) & p(101) & p(0001) & p(0101) & p(1001) & p(1101) \\ p(10) & p(010) & p(110) & p(0010) & p(0110) & p(1010) & p(1110) \\ p(11) & p(011) & p(0111) & p(0011) & p(0111) & p(1011) & p(1111) \end{pmatrix}$$

0

Main Theorem

Let

$$\begin{array}{lll} I &:= & \langle & \det \left(\rho(u_i v_j) \right)_{1 \leq i, j \leq d+1} & | & 0 \leq |u_i|, |v_j| \leq \lceil \frac{n}{2} \rceil, |u_i v_j| \leq n \rangle \\ \\ J &:= & \langle & \det \left(\rho(u_i v_j) \right)_{1 \leq i, j \leq d} & | & 0 \leq |u_i|, |v_j| \leq d-1 & \rangle. \end{array}$$

Note: To obtain equations for strings of length *n*, replace

$$p(uv) = \sum_{w,|w|=n-|uv|} p(uvw) \quad \text{for} \quad |uv| < n.$$

Theorem:

$$\overline{\operatorname{im} \mathbf{g}_{n,d}} = \operatorname{rad} I : \operatorname{rad} J.$$

Outlook

- Larger alphabets
- Pathological cases
- Transporter theorem

Thanks for the attention!