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Phylogenetics

A sketch of a species tree from Darwin’s
early work.

[1930,1950] Phylogenies (cladograms) built
based on shared morphological ancestral
data (Zimmerman, Hennig)

[1960] Zuckerkandl and Pauling proposed
using molecular data (DNA, protien, . . .) for
building phylogenies.



Pairwise Distance to Trees

Let Tn be the set of all unrooted
binary trees on n leaves.

A clade of T ∈ Tn is a subgraph
given by an internal node and all
its children.

Observe alignment of DNA for n
taxa, and compute pairwise dis-
tances d(i , j).

Want tree T ∈ Tn that
best explains the dis-
tances d(i , j).

Follow the minimum
evolution principle.

• For T ∈ Tn, estimate the branch
lengths from d(i , j).

• Pick T with smallest tree length
:=
∑

e∈E(T ) length(e).



Balanced Minimum Evolution

Given the pairwise dis-
tances d(i , j) between n
taxa and T ∈ Tn, how
does one estimate the
branch lengths of T?

The Balanced Minimum Evolution
scheme is a weighted least squares
estimate of the branch lengths of T ,
given d(i , j), that puts more confi-
dence on the short evolutionary dis-
tances than on larger ones.

For T ∈ Tn and 1 ≤ i , j ≤ n de-
fine

yT
i,j := # edges between i and j ,

wT
i,j :=

1

2yT
i,j−1

wT := (wT
1,2, wT

1,3, . . . , wT
n−1,n)

wT =
( 12 13 14 23 24 34

1
2 , 1

4 , 1
4 , 1

4 , 1
4 , 1

2

)



Balanced Minimum Evolution Polytope

In the BME framework, the tree
length can be expressed by
Pauplin’s formula∑
e∈E(T )

length(e) =
∑
i,j

wT
i,jd(i , j).

Thus, given d(i , j), the BME
scheme is to find T ∈ Tn mini-
mizing ∑

i,j

wT
i,jd(i , j).

BME polytope is defined as

Pn := conv
(

wT | T ∈ Tn

)
.

• (2n − 5)!! many binary trees.
• NP-hard to optimize (Day

87).

The software FastME uses tree pivot moves (NNI) to change
trees and heuristically optimize Pauplin’s formula. Adjacency on
the BME polytope is unknown, as is the face structure.



BME Adjacency
Theorem [H., Hodge, Yoshida]

Given a clade C ⊆ T ∈ Tn, a c ∈ R(n
2) can be efficiently com-

puted such that

argmaxT∈Tn
wT · c = {T ∈ Tn | C ⊆ T }.

Theorem [H., Hodge, Yoshida]

If T ′, T ′′ ∈ Tn are adjacent by a subtree-prune-regraft(SPR)
move then T ′ and T ′′ are adjacent on the BME polytope Pn.



Cherry Forcing Example

wT1 =
( 12 13 14 23 24 34

1
2 , 1

4 , 1
4 , 1

4 , 1
4 , 1

2

)
wT2 =

( 12 13 14 23 24 34
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4

)
wT3 =

( 12 13 14 23 24 34

1
4 , 1

4 , 1
2 , 1

2 , 1
4 , 1

4

)
T1 is uniquely determined by specify-
ing either {1, 2} or {3, 4} as a cherry.
Let c = (1, 0, 0, 0, 0, 0) and note

wT1 · c > wT2 · c = wT3 · c.

Idea: Given a tree T ∈ Tn, iteratively force “cherries” of T by set-
tings corresponding entries of c to smaller and smaller values,
similar to a moment curve.



Cherry Forcing Algorithm
Let T̂ ∈ Tn and K > 0. (I will do example for n=7 on the board.)

1: Let T ′ := T̂ .
2: Let K̃ := K .
3: Let c := 0 ∈ R(n

2).
4: repeat
5: Pick a cherry {k , l} of T ′.
6: Let i be a shallowest leaf in subtree k of T̂ .
7: Let j be a shallowest leaf in subtree l of T̂ .
8: Let cij := K̃ .
9: Let K̃ := 1

2wbT
ij K̃ .

10: Let T ′ := binary tree of T ′ where leaves k and l are amal-
gamated to one leaf.

11: until T ′ is the star tree on three leaves.
12: return c and K̃ .

Example



Nearest Neighbor Interchange

Example of an NNI move where
X1,X2,X3, and X4 are subgraphs
(clades) of trees T1, T2, and T3.

NNI ⊂ SPR.

NNI Adjacent =⇒ BME adja-
cent.

Let T1 and T2 be as above. Use the Cherry Forcing Algorithm
(CFA) four times, with the output K̃ as input K for the next run,
to find c such that subgraphs X1, X2, X3, X4 are fixed when opti-
mizing wT · c. Finally, pick the deepest leaf i in X1 and deepest
leaf j in X4. Set ci,j = −K̃ , where K̃ is the output of the last run
of the CFA.



Consider T1 and T2 above and K = 1. Then we set c ∈ R(14
2 ),

where
c1,2 = 1, c3,4 = 1

22 , c1,3 = 1
24 ,

c6,7 = 1
28 , c6,8 = 1

210 , c5,8 = 1
213 ,

c9,10 = 1
216 ,

c12,13 = 1
218 , c12,14 = 1

220 , c11,14 = 1
223 ,

and c1,12 = − 1
226 .

For c above, only T1 and T2 maximize wT · c.



SPR =⇒ BME adjacency

For any T ′, T ′′ ∈ Tn adjacent by an SPR
move, there is a set of clades common
to both T ′ and T ′′. Using the CFA, the
common clades can be fixed. Hence, any
SPR move can be reduced to the trees T1
and T2 on the left.

A generalized version of the CFA can be
roughly described as a hierarchy of rules
that say either two leaves {i , j} are
• as close as possible, or
• as far away as possible.



SPR =⇒ BME adjacency

T1 and T2 will be the only optimums of wT ·c if, in this
order, c is chosen such that
• leaves n − 1 and n − 2 are as far apart as

possible,
• leaf n is as close as possible to n − 1 or n − 2

(equally weighted),
• leaves 1 and n − 3 are as far apart as possible,
• leaves 1 and n − 4 are as far apart as possible,

•
...

• leaves 1 and 2 are as far apart as possible,
• leaf pairs {n − 2, n − 3} and {1, n − 1} are as

close as possible (equally weighted).



Future Work

Can we extend to describe
faces of BME? E.g, the three
trees adjacent by an NNI move
make a triangular two-face.

Is tree-bisect-regraft also a
BME edge?

What other adjacencies are
there? Investigating non-
circular adjacency.

What does the Neighbor Joining
algorithm do on CFA vectors?
Known that NJ is a greedy op-
timization over BME.



Thank you for your attention.

Edges of the Balanced Minimum Evolution
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David Haws
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Cherry Forcing Algorithm in Action

Cherry Forcing Algorithm would
output

c ∈ R(7
2)

where
c1,2 = 1,

c1,3 =
1
4
,

c3,4 =
1
32

,

c4,5 =
1

128
,

and otherwise ci,j = 0.
CFA


