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I Many of the most active areas of statistical research involve
large sparse data problems where the number of variables
and/or parameters is large, especially relative to the number
of independent obser vations.

I Standard statistical theory for estimation and results related
to asymptotic behavior often fail in such settings.

I The computational tools associated with algebraic statistics
are useful often only for low-dimensional problems, e.g.,
involving a small number of parameters.

I Upshot: algebraic statistical and the related computational
tools can nonetheless provide important insights of value in
large sparse contingency table and network settings.



Example: Monks in a monastery

I 18 novices observed over two years.

I Network data gathered at 4 time points; and on multiple
relationships.

Example 3: Monks in a Monastery

18 novices observed over two years.
Network data gather at 4 time points; and on multiple
relationships.

See analyses in Airoldi, et al. (2008) JMLR.
20 / 33See analyses in Airoldi, Blei, Fienberg, Xing. (2008) Mixed

membership stochastic block models. J. of Machine Learning
Research.



Example: The Collective Dynamics of Smoking in a Large
Social Network (James Fowler)

Node border= gender (red=female, blue=male). Arrow color = relation (purple=friend, green=spouse). Node

color = smoking behavior (white=nonsmoker, gray=smoker); darker shades = more cigarettes consumed per day.



The p1 random graph model (Holland-Leinhardt)

I n nodes, random occurrence of directed edges.

I Describe the probability of an edge occurring between nodes i
and j :

log Prob(no edge) = λij

log Prob(from i to j) = λij + αi + βj + θ
log Prob(from j to i) = λij + αj + βi + θ
log Prob(bi-directed edge) = λij + αi + βj + αj + βi + 2θ + ρij

I Parameters:

I λij is a normalizing constant
I αi represents node i sending an edge
I βi represents node j receiving an edge
I ρij represents the reciprocation effect (3 common forms:

ρij = 0,
ρij = ρ constant,
ρij = ρ+ ρi + ρj edge-dependent).
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Estimation for p1

I The likelihood function for the p1 model is clearly of
exponential family form.

I Holland-Leinhardt explored goodness of fit of model
empirically by comparing ρij = 0 vs.ρij = ρ.

I The problem is that standard asymptotics (normality and
chi-squared goodness of fit tests) aren’t applicable as the
number of parameters increases with the number of nodes.

I Fienberg and Wasserman used the edge-dependent
reciprocation model to test ρij = ρ.

I For a review of these and related models, see:
Goldenberg, Zheng, Fienberg, Airoldi. (2010) “A Survey of
Statistical Network Models”.



The problem:

I Describe a Markov
basis for n-node
network for large n.
(Describe the
corresponding toric
variety implicitly.)

A classical construction:

I Edge subring of a graph G (or: toric ring of G ):

I generated by the edges of the G :

I For G = Kn,m with vertex sets α1, . . . , αn and β1, . . . , βn,
the edge subring is the image of the map

pij 7→ αiβj .

I The defining ideal is the kernel of this map:

I an example of an element in the ideal is p12p34 − p14p32.



p1 model as a toric variety
I To each pair of nodes and edge type we associate a monomial

in the model parameters: p12(1, 1) 7→ λ12α1β2α2β1θ
2ρ12

represents a bi-directed edge between 1 and 2.

I The monomial map C [pij(a, b)]→ C [λij , αi , βi , θ, ρij ]

pij(a, b) 7→ λijα
a
i α

b
j β

b
i β

a
j θ

a+bρ
min(a,b)
ij

parametrizes a toric variety, whose design matrix An has:

I 4
(
n
2

)
columns (variables),

I
(
n
2

)
+ 2n + 1 rows (parameters) if ρij = 0;

2
(
n
2

)
+ 2n + 2 if ρij = ρ+ ρi + ρj .

I The kernel of the map (matrix) defines a toric ideal, whose
generating set is a Markov basis (Diaconis-Sturmfels ’98).

I For n = 3 and ρij edge-dependent:

- the design matrix is a rank-11 14× 12 matrix

- the variety is a cubic hypersurface in P11.
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3-node network
I Markov bases connect all networks with same sufficient

statistics (in- and out- degrees of the nodes).
I For all 3 cases of ρij , there is only one Markov move:

i

Figure: dashed edges are replaced by full edges.

I remove edges 1→ 2, 2→ 3 and 3→ 1

replace them by edges 2→ 1, 3→ 2 and 1→ 3.

I This move is represented by the binomial:

p12(1, 0)p23(1, 0)p13(0, 1)− p12(0, 1)p23(0, 1)p13(1, 0).



Simplification of p1 and toric ring of a graph

By ignoring normalizing constants λij we get a simplified model:

Theorem (P.-Rinaldo-Fienberg)

If ρij = 0, the ideal of the simplified model equals IGn + Tn

where Tn is generated by pij(1, 0)pij(0, 1)− pij(1, 1)
and IGn is the toric ideal of the edge subring of Gn := Kn,n\{i , i}.

Theorem (P.-Rinaldo-Fienberg)

If ρij = ρ+ρi +ρj , the ideal of the simplified model equals IGn + Qn

where IGn is as above,
and Qn is the toric ideal of the edge subring of Kn.



Simplification of p1 and toric ring of a graph, II
An example with 4 nodes

I What is IGn? Its generators have a nice description in terms of
paths:

p14(1, 0)p23(1, 0)p24(0, 1) −
p12(1, 0) p24(1, 0)p34(0, 1)

Figure: the corresponding path in K4,4\{i , i}
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Toric ideal of the p1 model

I Incorporate λij into the previous theorems:

Theorem (P.-Rinaldo-Fienberg)

The toric ideal of the p1 random graph model is the
multi-homogenous piece of the toric ideal of the simplified model.

By multi-homogeneous, we mean with respect to each pair i , j .

I We claim that homogenizing simple moves appropriately
produces the whole Markov basis for the model:

Conjecture

Minimal Markov (Gröbner) bases for the p1 models can be
obtained from Markov (Gröbner) bases of the simplified model by
repeated lifting and overlapping of the binomials in the minimal
Markov bases of various (n − 1)-node subnetworks.

I N-fold structure of the design matrices
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Network model challenges

I How to use algebraic statistics results for (1) existence of
MLEs and (2) to assess fit of p1 to large-scale network
settings?

I Linking algebraic statistics for loglinear models to results for
p1 .

I Extending results from p1 to Exponential Random Graph
Models.

I Algebraic statistics for mixed-membership stochastic block
models.



Why reparametrize?, redundancy, symmetry

I Fienberg-Wasserman: p1 model is a n2 × 2× 2 contingency
table (n2 dyads, 2× 2 configurations)

I Highly redundant! Undesirable for finding Markov bases: 4n2

indeterminates instead of 2n(n − 1). (OK for MLE.)

I Number of generators explodes combinatorially: for the case
of constant reciprocation, ρij = ρ, the ideal of the network on
n = 3 nodes has 107 minimal generators, and the one of the
4-node network has 80, 610.

I Non-applicable Markov basis elements; symmetries

I We were able to analyze the n = 4 case and reduce all of the
80, 610 moves to the ones we get using our design matrices,
but the effort was nontrivial.

I Therefore, at least from the point of view of studying Markov
bases, the parametrization we are using is preferable.



Revealing “simple” moves

The following degree-five binomial appears as a minimal generator
of the ideal of a 4-node network:
pli (1, 0)pij(1, 0)pjk(1, 0)plj(0, 0)pik(0, 0)−
pli (0, 0)pij(0, 1)pjk(0, 0)plj(1, 0)pik(1, 0)
This move can be obtained by the following sequence of simple
moves:
replace the edges (l,i) and (j,k) by the edges (l,k) and (j,i)
followed by
replace the edges (i,j) and (l,k) by the edges (i,k) and (l,j)..

i i

Figure: A sequence of two moves on 4 nodes: dashed edges are replaced
by full edges.



Simple moves

I In fact, for n = 3, 4, 5, we can get all Markov moves in our list
as decompositions of these simpler moves!

Figure: An essential, simple move

I Bidirected edges appear in this same pattern in all Markov
moves. These are generators of Qn from Theorem 2.



Next?

I Prove the ”homogenization” claim in terms of generators!

I Prove the decomposition to simple moves, even though they
are not in the toric ideal as defined.

I This decomposition would identify precisely the Markov moves
in this setting with moves of Holland-Leinhardt in some cases.

Thank you for your attention!

Reference: Petrović, Rinaldo, Fienberg.
“ Algebraic statistics for a directed random graph model with
reciprocation. ” AMS CONM Series volume on Algebraic
Methods in Statistics and Probability.
arXiv:0909.0073v2
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