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Statistical inference under a log-linear likelihood

• S ⊂ Zd
+ set of lattice pts (possible explanations for observed data)

• For m ∈ S, log-likelihood is !(m) ∝ c ·m (linear in m)

• c is given vector of parameters.

• Inference: Find most probable explanation, argmaxm∈S !(m).

• Algebraic derivation of Inference: Given polynomial f ∈ Z+[x1, . . . , xd],

find leading term of f under term order c.

2



Recursively defined polynomials over Z+

• A polynomial f ∈ Z+[x1, . . . , xd] is recursively presented over Z+ if

f = FN , where

– F0 := 1

– Fk := Gk(F0, . . . , Fk−1) where Gk ∈ Z+[x][y0, . . . , yk−1],

k = 1, . . . , N .

• For inference applications, definition of Gk usually depends on given ob-

served data

• Evaluation over semirings: The entire set F0, F1, . . . , FN can be effi-

ciently evaluated in sequential order, using the recursive presentations.

(Dynamic programming)

– Example: Finding leading terms. (Inference)

– Linear complexity: Number of semiring operations = number of opera-

tions in the recursive presentations G1, . . . , GN .
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Parametric inference

• Inference: Given f ∈ Z+[x1, . . . , xd], and term order vector c,

compute the leading term of f .

• Parametric inference Find all possible leading terms of f , as term

order varies.

• Algebraic formulation: Compute the Newton polytope NP (f).

– Recall: NP (f) = conv{(m1, . . . ,md) | xm1
1 · · · xmd

d ∈ f}.

• Normal cone of (m1, . . . ,md) ∈ NP (f) gives all term orders c

for which xm1
1 · · · xmd

d is leading term of f
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Computing NP (f) for recursively presented f ∈ Z+[x]

• Polytope semiring method (Pachter/Sturmfels): Evaluate recursive

presentation of f , over the polytope semiring:

– P #Q := Minkowski sum P +Q

– P ⊕Q := conv(P ∪Q)

• Theorem: f(e1, . . . , ed) = NP (f), where {ei} is standard basis.
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Incremental method to compute NP (f )

• Find new vertices by repeatedly computing leading terms of f wrt

different term orders.

• Software iB4e incrementally builds polytope P , given subroutine

Optimize(c) which solves LP max c · x subject to x ∈ P .
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How iB4e computes a polytope

To find new vertices, query Optimize(c) with c orthogonal to facets

of current polytope.
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How iB4e computes a polytope

To find new vertices, query Optimize(c) with c orthogonal to facets

of current polytope.
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Parametric k-best inference, and
k-set polytopes
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Parametric k-best inference: motivation

• Correct explanation may be near-optimal likelihood, instead of opti-

mal

• What if we want to find near-optimal explanations as parameters

vary?
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Parametric k-best inference

• Given f ∈ Z+[x1, . . . , xd],

• Let S = {(m1, . . . ,md) | xm1
1 · · · xmd

d ∈ f} be set of exponent

vectors of all terms in f .

• Problem: Compute all k-tuples (m1,m2, . . . ,mk) ⊂ S which can

become the top k points in S under some linear functional.

• In other words, compute all taylor expansions of f that have k terms
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k-sets and ordered k-sets

• Given S = {s1, . . . , sn} ⊂ Rd,

• Suppose T ∈
(
S
k

)
, and c · t > c · s for all t ∈ T and s ∈ S\T .

Then T is called the k-set induced by c.

• Suppose c · sσ(1) > c · sσ(2) > · · · > c · sσ(k) > · · · . Then

(sσ(1), . . . , sσ(k)) is the ordered k-set induced by c.
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(Unordered) k-set polytopes

• The k-set polytope Qk(S) is

Qk(S) = conv{
∑

s∈T

s |T ∈
(
S

k

)
}

• Studied by Edelsbrunner, Fukuda and colleagues.

• Theorem:

–
∑

s∈T s is a vertex of Qk(S) iff T ∈
(
S
k

)
is a k-set,

– The normal cone N(
∑

s∈T s) is set of c which induce k-set T .
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Ordered k-set polytopes

• Note the equivalence:

– (s1, . . . , sk) is the ordered k-set induced by c, iff

– {s1, . . . , sj} is the (unordered) j-set induced by c, for

each j = 1, . . . , k.

• Thus vertices of Q1(S) + · · · + Qk(S) correspond to ordered k-

sets. Normal fan characterizes how ordered k-sets depend on c.

• We call Pk(S) := Q1(S)+· · ·+Qk(S) the ordered k-set polytope

for S.
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Example k-set polytopes Qk(S) and Pk(S), for S = vertices of a

tetrahedron. Note the relation P3(S) = Q1(S) +Q2(S) +Q3(S).
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Parametric k-best inference

• S = exponent vectors of terms in f ∈ Z+[x1, . . . , xd].

• Vertices of Pk(S) give all k-tuples of top k leading terms that arise

in f as term order varies.

• Normal fan of Pk(S) gives the term orders which yield each choice

of top k terms.
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Building Pk(S) for parametric k-best inference

• S = exponent vectors of terms in f ∈ Z+[x1, . . . , xd].

• Vertex-finding oracle Optimize(c) for Pk(S):

– Find the leading k terms xz1 , . . . , xzk for f , under term order

vector c.

– Return vertex
∑k

i=1(k − i+ 1)zi

• Thus incremental polytope construction iB4e can construct Pk(S).
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Finding top k leading terms

• Let LT k(f) denote the set of top k terms of f for given term order

c.

• For f, g ∈ Z+[x1, . . . , xd] we have:

– LT k(f + g) = LT k(LT k(f) + LT k(g))

– LT k(fg) = LT k(LT k(f) · LT k(g))

• Thus LT k() can be computed efficiently for recursively presented

polynomials.
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Complexity of parametric k-best inference

• For k = 1, best known bounds for parametric inference come from

general argument of Pachter/Sturmfels.

• Let V be the volume of lattice polytope P ⊂ Rd, d fixed.

• Andrews theorem: If V > 0, P has O(V(d−1)/(d+1)) vertices.

• Corollary: If f ∈ Z+[x1, . . . , xd] has degree ni > 0 in variable

xi, then NP (f) has O(
∏d

i=1 n
(d−1)/(d+1)
i ) vertices.
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Complexity of parametric k-best inference

• S = exponent vectors of terms in f ∈ Z+[x1, . . . , xd]. Let V =

vol(NP (f)).

• Observation: Qk ⊂ k·NP (f), and dimQk(S) = dim(NP (f)).

• (Andrews theorem): IfV > 0, thenQk(S) hasO((kdV)(d−1)/(d+1))

vertices, and Pk(S) has O((k2dV)(d−1)/(d+1)) vertices.

• Polynomial in k

• For fixed k, same as best known bounds for k = 1 case.
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Constrained parametric inference
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“Reasonable” vertices of polytopes

• General problem: For a polytope P , we might only want vertices

whose normal cones intersect a prescribed cone C .

• Often the case in parametric inference

• Example: Bayesian networks: logs of transition probabilities should

be non-positive. Also some types of transitions might be prescribed

to be more likely than others.
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Envelopes of polytopes

• Given polytope P ⊂ Rd, and a cone C ⊂ Rd with apex 0, the

C-envelope of P is the set of faces {F ⊂ P |N(F )∩C (= {0}}.

• Graph of C-envelope is connected subgraph of graph of P .

• For parametric inference, we will assume C is full-dimensional and

pointed.
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Incremental construction of C-envelopes

• Can we use iB4e to compute C-envelope of polytope P , given

oracle Optimize() for P?

– Can we avoid finding vertices outside the C-envelope, to speed

up the computation?

• Yes:

– Let u1, . . . , um be generators of the dual C ′.

– Initialize P ′ = conv({Nui}) where N is a large number.

– Then finish runningiB4e to add vertices toP ′, usingOptimize()

oracle for P .

• Output P ′ is desired envelope. (Proof: Farkas Lemma)
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