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Motivation

Consider a study where the causal effect of T (e.g. smoking) on Y

(e.g. lung cancer) is of interest.
Assume that the data is generated by the following (qualitative)
model:

Figure: Causal Model
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Algebraic statistics & Inference from partial data

What can we learn from fragmentary (but compatible) data?

Given some (partial) information (T) that is related to
unobserved contingency table (n), what can we learn about
that table and its joint distribution (p)?

What reliable statistical analysis is possible?, e.g.,
f (n,p|T) ≈ f (n,p|full)

Conditional inference given partial information: optimization,
enumeration, sampling.

Relevant for data privacy and confidentiality, ecological inference,
missing data problems, causal inference with observational data.
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Conditional Inference: sampling with Markov bases

X1, . . . ,Xk , where each Xi ∈ [di ] ≡ {1, . . . , di}
n ∼ multinomial(N, p)
p ∈ △ = {p : p(i) ≥ 0 ∀i and

∑

i∈I p(i) = 1 }

M is a statistical model specified by a set of (semi-algebraic) constraints on p

T is the given partial information, i.e., linear constraints
FT the set of all possible tables that preserve T

FT = A
−1[t] := {n ∈ Z

d
+ : An = t}

A is the constraint matrix:

Example

A =













1 1 1 1
1 1 0 0
0 0 1 1
d12 −d11 0 0
0 0 d22 −d21


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
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
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Algebraic Algorithms for Conditional Inference

When T is a set of marginal totals

Diaconis and Sturmfels (1998) - Markov Basis and log-linear
models
Dobra et al (2006), Chen et al (2006)

When T is a set of conditional rates & N:

Slakovic (2004) - Generate a synthetic table.
Lee(2009), Slakovic & Lee (2009) - Prior and posterior
specification of p

When T is a set of arbitrary linear constraints:

Marginals, Conditional rates, population zeros etc.
Useful for several applied problems in statistical inference
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Basic MCMC algorithm

Straight forward extension of MCMC algorithm in Diaconis
and Sturmfels (1998)

When T = {margins} and M = log-linear:

T is MSS

P(n|T,M) does not depend on p

In general

T need not be MSS of M
P(n|T,M) depends on p

Sample from P(n,p|T ,M), Use Variable at a time MCMC:

Sample from P(n|p,T,M)

Sample from P(p|n,T,M)
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R4ti2 - interface with 4ti2

R interface to 4ti2, R4ti2 [Karwa and Slavkovic (in prep.)]

constraint()
markovBasis()
groebnerBasis()
mcmc1()
mcmc2()
pvalue(), ecological() etc.
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MCMC: Algorithm 1

1 Sample p(t+1) from P(p|n(t),T,M) ∝ P(n(t)|p)P(p|T,M) = P(n(t)|p)P(p|M).
(Could be a Gibbs update, e.g for multinomial with Dirichlet distribution or may
require M-H sampling for non-standard distributions)

2 Generate tables from the conditional distribution, P(n|T, p), is divided into two
steps: completing a table consistent with the given information and deciding to
accept or reject it.

1 Generate the candidate table n∗ from q(n(t), n∗) induced by Markov
moves. Uniformly choose one move m ∈ MB and ǫ = ±1 with equal
probability

2 Add the selected move to the previous table, that is, n∗ = n(t) + ǫm.

3 If n∗ ≥ 0, accept the candidate table n∗ with min{1, ρ}, where

ρ =
P(n∗|p(t))

P(n(t)|p(t))
. (1)

Otherwise, stay at n(t) .
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MCMC: Algorithm 2

Algorithm 2 based on the following corollary due to Slavkovic, Zhu, and
Petrovic (2009)

Corollary

The Markov basis for the space of tables given the conditional can be split into

two sets of moves:

1) the set of moves that fix the margin, and

2) the set of moves that change the margin.

The Markov basis connecting all of FA|B consists of the moves connecting each
sub-fiber FAB(pi ) (the first set of moves) and the moves connecting each
sub-fiber to another (the second set of moves).
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MCMC: Algorithm 2

1 For l = 1, . . . , L, simulate contingency tables, nl,1, . . . , nl,Sl from the
sub-reference set, FAB l or FAB l

,C via a certain sampling scheme

2 Average/Combine L sets of sampled tables.

P(N = n|nA|B , n) =
L∑

l=1

P(N = n|nAB l , n)wl , (2)

where wl = P(nAB l |nA|B , n), and nAB l is consistent with nA|B for l = 1, . . . , L

Assigning Weights 1: Equal Weights
w = w1 = . . . = wL.

P(N = n|nA|B , n) = w

L∑

l=1

P(N = n|nAB l , n). (3)

Assigning Weights 2: Markov Moves Assign more weight on the sub-reference

set preserving the original values for the marginal [AB]. w1 =
|MBAB |
|MBA|B |

and

wi =
1

L−1

|MBAB′ |

|MBA|B |
for i = 2, . . . , L.
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Algebraic Causal Modeling

Two widely used frameworks for analyzing causal effects: Causal
Diagrams and Potential Outcomes

Bayesian networks and Causal Diagrams already brought into the realm of
Algebraic Statistics [Drton, Sturmfels, and Sullivant (2009), Garcia et. al.
(2005), Riccomagno and Smith (2007), and many more]

Work related to identifiability and latent class models [Drton, Sturmfels,
and Sullivant (2009), Fienberg, et. al. (2007), Garcia (2004)]

Algebraic Flavor of Potential Outcomes

Unconfoundedness is basically a statement of conditional independence
{Yi0,Yi1} ⊥⊥ T |X
Consistency is an algebraic condition: Y = TYi1 + (1− T )Yi0
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Non-identifiable Causal Effects

Mostly data are observational (or from imperfect experiments):

Data may also come from different sources

Is it possible to infer something about ACE?

Estimating non-identifiable causal effects:

Assign a probability measure (prior) to the parameters of
latent variables
Sample from the posterior distribution consistent with the
observed information T

Estimate the posterior distribution of Average Causal Effect
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Examples

Figure: Violent example from
Riccamango and Smith (2007)

X , Z : before & after testosterone levels
E : exposure to a violent movie
Y : arrested for fighting
Exp 1: P(X ) and P(Z |E = 1,X )

Exp 2: P(Z |Y = 1), P(E |Y = 1) and

P(Y )

Figure: Speeding and accident

S = speed level and A=age
C = crash
U = unobserved confounder

Obs: P(C), P(S |C = 1), P(A),

P(A|C = 1)
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Simulation Example

Simulated data of Yi0,Yi1, S , A, U

(Yi0,Yi1) (0,0) (0,1) (1,0) (1,1)
U A S
0 0 0 1 16 6 10

1 3 4 1 1
1 0 2 8 12 2

1 1 6 1 2
1 0 0 7 9 6 3

1 5 19 8 4
1 0 4 11 10 2

1 7 20 6 3
ACE = 0.215
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Statistical Model - Sensitivity Analysis

Unspecified Domain of U can be
difficult to deal with

Replace U by a coarsest confounder
Ry (Balke and Pearl, 1998, Rubin,
and many others)

For each level of A, Ry has four
states, based on the pattern of joint
distribution of Potential Outcomes

Yi0 Yi1 Ry

0 0 0
0 1 1
1 0 2
1 1 3

Figure: Causal Model

Ry = 0, immune
Ry = 1, causative
Ry = 2, preventive
Ry = 3, doomed
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Example - Estimating the posterior of ACE

Dirichlet prior information specified over latent variables, e.g.
P(Ry |S ,C ,A)

T is the observed information, in this case, the conditional
rates P(S |C = 1), P(S |A) and P(A|C = 1) and the marginals
P(C ) and P(A)

M is defined by patterns of Ry (structural zeros)

Using R4ti2, can sample from the posterior of the joint table
{C ,A, S ,Ry , }

Results very sensitive to prior as no new Ry data appears
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Posterior of ACE - Result

Computations done using R4ti2 and MCMCpack

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

N = 25000   Bandwidth = 0.02263

D
en

si
ty

Figure: Non-informative prior
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Figure: Informative (skewed prior)
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Ecological Inference

Reconstructing individual behavior from group-level data

Applications in Political and Social Science, Epidemiology, Geography,
Economics,...

Huge literature of statistical methods starting from Goodman (1953), King
(1997), King (2004), Imai, Lu and Strauss (2009)

Current methods:

The Method of Bounds
Goodman’s Regression

King’s El

Limitations:

Work with fractions
Almost all methods for 2 by 2 tables

Can incorporate only marginal constraints
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Inference in voting pattern of different racial groups

X = race ∈ {B,W ,H} and Y = voting behavior ∈ {D,R,A}
K : number of precincts
nk: Contingency table associated precinct k.

Partial Information T is a set of linear constraints on each nk

Voting
Race Demo Rep Abstain Total
Black ? ? ? n1+k
White ? ? ? n2+k

Hispanic ? ? ? n3+k

Total n+1k n+2k n+3k Nk

Voting
Race Demo Rep Total
White p1|1 p2|1 1

Other p1|2 p1|2 1

Observed marginals: T = {n+i , nj+}

Observed marginals for K and conditionals over collapsed table for a set S ⊂ K

Several Posterior quantities of interest: µ, Σ,
∑

k f (nk ), e.g. λij =
∑

k nijk∑
k ni+k−ni3
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Bounding Causal Effects

Bound:

ACE = q20 + q21 − q10 − q11

Subject to:

p1|1(q00 + q10)− p0|1(q01 + q21) = 0

p1|0(q20 + q30)− p0|0(q11 + q31) = 0

q10q21 − o1q20q11

q00q31 − o2q01q30

3∑

i=0

1∑

j=0

qij = 1

0 ≤ qij ≤ 1

Solution using Groebner Basis and
Lagrange multipliers:(Using Singular and
Maxima)

0.0842 ≤ ACE ≤ 0.5608
Figure: Surface of ACE
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Conclusion

Make tools from algebraic statistics accessible to applied
researchers (R4ti2)

Framework for inference in non-identifiable models

When there is a measured covariate
When the structure of the unmeasured confounder is known
Sensitivity Analysis for potential confounders
Additional assumptions on the structure of counts (in the form
of log-linear models)
Combine information from disparate sources
Ecological Inference

Privacy and Confidentiality
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Future Work

Issues of data compatibility

Slow convergence of MCMC algorithm

Improve sampling P(p|n,T,M)

Rational parametrization of conditional independence ideal
Seems to work for small problems

A complete 4ti2 (and Singular?) interface for R
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“Algebraic Statistics is both cool and useful” Bernd Sturmfels

Thank you.
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