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Our Result

Outline

Exponential random graphs (or p∗) models for network data and
degeneracy.

Discrete exponential families, extended exponential families and their
geometry.

A geometric characterization of the closure of discrete exponential
families. Explanation of degeneracy.

A. Rinaldo Discrete Exponential Families and ERG Models 2/24



Exponential Random Graph Models and Degeneracy
Discrete Exponential Families

Our Result

Network Analysis

Let Gn be the set of simple graphs on n nodes. Thus |Gn| = 2(n
2).

The nodes represent the units of some population of interest. The edges
of any x ∈ Gn encode a set of static relationships among population
units.

Source: Chung and Lu (2006), Complex Graphs and Networks.

Statistical Network Analysis

Construct interpretable and realistic statistical models for Gn.
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Exponential Random Graph (ERG) or p∗ Models

Exponential Random Graph (or p∗) models arise by specifying a set of
informative network statistics on Gn

x 7→ t(x) = (t1(x), . . . , td (x)) ∈ Rd ,

such that the probability of observing x is a function of t(x) only.

Some examples:

the number of edges E(x) (Erdös-Renyi model);

4

number of triangles T (x);

Figure 1 shows the sufficient statistics in a 2-D scatter plot whose x-axis
is the number of edges in the graph and whose y-axis is the number of
triangles. And in this figure, we use the color to indicate the number of
graphs corresponding to each pair of sufficient statistics. The darker the
color is, the larger the number is. From this figure, we can see the sufficent
statistics are far from the upper boundary of the convex hull, but we can
image as the number of the node increases, the upper boundary will approach
the data points and the area will become thiner.

What kind of graphs are in the boundary? First,the upper boundary
should consist of the complete graph (the right-most point), the empty graph
(the left-most point) and something between. Something between means the
compositions of the complete graph and the empty graph, for example,

3

the number of k-starts;

Figure 1 shows the sufficient statistics in a 2-D scatter plot whose x-axis
is the number of edges in the graph and whose y-axis is the number of
triangles. And in this figure, we use the color to indicate the number of
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the data points and the area will become thiner.

What kind of graphs are in the boundary? First,the upper boundary
should consist of the complete graph (the right-most point), the empty graph
(the left-most point) and something between. Something between means the
compositions of the complete graph and the empty graph, for example,

3

the number of nodes with specified degrees (degree statistic).

See Social Networks, Volume 29, Special Section: Advances in
Exponential Random Graph (p*) Models.
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The Edge-Triangle (ET) Example

We consider G9 with 2-dimensional network statistics (E(x),T (x)).

The number of distinct graphs is 236, while the number of distinct
network statistics is 444.
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Exponential Random Graph (ERG) or p∗ Models

(Koopman-Pitman-Darmois Theorem.) Given the choice t of network
statistics, construct a family of probability distributions {Qθ, θ ∈ Θ} on Gn

such that, for a given parameter θ ∈ Θ, the probability of observing x is

Qθ(x) = exp {〈θ, t(x)〉 − ψ(θ)} ,

where
ψ(θ) = log

“P
x∈Gn

e〈θ,t(x)〉
”

the log-partition function - a (often intractable)
normalizing constant;
Θ = {θ ∈ Rd : eψ(θ) <∞} is the natural parameter space.

Two key observations about this model:
Invariant with respect to relabeling of the vertices.

Redundant: if t(x ′) = t(x), then Qθ(x) = Qθ(x ′), for all θ. For the ET
example, the median number of graphs corresponding to a network statistic
is 2, 741, 130!
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Sufficiency Principle

Let T = {t : t = t(x), x ∈ Gn} ⊂ Rd and ν(t) = |{x ∈ Gn : t(x) = t}|.

Consider instead the family of probability distributions {Pθ, θ ∈ Θ} on T
such that, for a given parameter θ ∈ Θ, the probability of observing t is

Pθ(t) = exp {〈θ, t〉 − ψ(θ)} ν(t),

where Θ and ψ(θ) remain unchanged.

In the ET example, instead of
G9

we can work on

T =
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Inference

Given one observation x of the network, i.e. given t = t(x),
estimate θ;
assess whether the ERG model fits the data.

For the ET example, we want to learn 2 parameters: the edge and
triangle parameters.

The maximum likelihood estimator (MLE) of θ is

θ̂ = argmaxθ∈ΘPθ(t).

The MLE is said to be nonexistent when the supremum is not achieved
by any point in θ ∈ Θ. Nonexistence of the MLE means that there are too
many parameters to estimate for the observed statistics t .
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Exponential Random Graph Models

Advantages of using exponential families:

best-behaved class of statistical models built around the notion of
sufficiency;

remarkably good theoretical properties that are well-understood.

Disadvantages of using exponential families for network models:

MLE almost impossible to compute; pseudo-MLE via MCMC methods
can be computed instead but convergence can be very slow;

asymptotic behavior is non-standard;

degeneracy.
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Degeneracy in ERG Models

What constitues degeneracy (Handcock, 2003)?

“A random graph model is near degenerate if the model places almost all
its probability mass on a small number of graph configurations [...] e.g.
empty graph, full graph, an individual graph, no 2-stars";

a degenerrate model is not “able to represent a range of realistic
[networks]" since only a “small range of graphs [is] covered as the
parameters vary";

the MLE does not exist and/or MCMCMLE fails to converge;

the observed network t is very unlikely under the distribution specified by
the MLE;

the model misbehaves...
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Degeneracy: Example from Handcock (2003)

Consider modeling G7, with 2-dimensional network statistics given by

the number of edges

4

the number of 2-stars

4

For many configurations of the parameters θ ∈ R2, plot the probability of
degenerate configurations, such as

the full graph;
the empty graph;
minimal and maximal number of 2-stars given the number of edges;
graphs with missing exactly one and exactly two edges;
graphs with one and with two edges.

Darker values correspond to higher probabilities of degenerate
configurations.

A. Rinaldo Discrete Exponential Families and ERG Models 11/24



Exponential Random Graph Models and Degeneracy
Discrete Exponential Families

Our Result

Degeneracy: Example from Handcock (2003)

Consider modeling G7, with 2-dimensional network statistics given by

the number of edges

4

the number of 2-stars

4

For many configurations of the parameters θ ∈ R2, plot the probability of
degenerate configurations, such as

the full graph;
the empty graph;
minimal and maximal number of 2-stars given the number of edges;
graphs with missing exactly one and exactly two edges;
graphs with one and with two edges.

Darker values correspond to higher probabilities of degenerate
configurations.

A. Rinaldo Discrete Exponential Families and ERG Models 11/24



Exponential Random Graph Models and Degeneracy
Discrete Exponential Families

Our Result

Degeneracy: Example from Handcock (2003)

Figure 3: Cumulative Degeneracy Probabilities for graphs with 7 actors.

23
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Degeneracy in the ET Example

For the ET example, we capture overall degenerate behavior using
Shannon’s entropy function

θ 7→ −
X
t∈T

Pθ(t) log2

„
Pθ(t)
ν(t)

«
, θ ∈ Θ.

Rationale: degeneracy occurs when the probability mass is spread over
a small number of network statistics, so degenerate distributions will
tend to correspond to values of θ for which the entropy function is small.
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Degeneracy in the ET Example
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Basics of Discrete Exponential Families

See Barndorff-Nielsen (1974) or Brown (1986)

Let T be a random vector taking values in a finite set T , for example
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The distribution of T belongs to the exponential family E = {Pθ, θ ∈ Θ},
with

Pθ(t) = exp {〈θ, t〉 − ψ(θ)} ν(t), θ ∈ Θ = Rd .

The set P = convhull(T ) is called the convex support.

It is a polytope.

int(P) = {Eθ[T ], θ ∈ Θ} is precisely the set of all possible expected values
of T : mean value space.

int(P) and Θ are homeomorphic: we can represent the exponential family
using int(P) instead of Θ: mean value parametrization.
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Convex support for the ET example.
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One-to-one correspondence between Θ and int(P).
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Basics of Exponential Families

Existence of the MLE
the MLE exists if and only if t ∈ int(P).

In the ET example, MLE exists for 415 of 444 possible network statistics.
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How do we model the boundary of P (where the MLE does not exist)?
Solution: compute the closure of E .
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Extended Exponential Families: Geometric Construction

For every face F of P, construct the exponential family of distributions EF

for the points in F with convex support F . Note that EF depends on
dim(F ) < d parameters only.

The extended exponential family is

E = E ∪ {EF : F is a face of P}

Within E , the MLE always exists.

Extended Exponential Family

The extended exponential family is the closure of the original family.
Geometrically, this corresponds to including the boundary of the convex
support P, i.e. to taking the closure of the mean value space.
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Back to Degeneracy
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Extended Exponential Families: Dual Geometric Construction

We derive an alternative geometric construction of the extended
exponential families using the natural parameter space and not the
mean value space.

Let P be a full-dimensional polytope in Rd . The normal cone to a face F
is the polyhedral cone

NF =
n

c ∈ Rk : F ⊂ {x ∈ P : 〈c, x〉 = max
y∈P
〈c, y〉, }

o
consisting of all the linear functionals on P that are maximal over F . The
set of cones

N (P) = {NF ,F is a face of P}

is called the normal fan of P.

Key properties:
The (relative interiors of the) cones in N (P) partition Rd .
dim(NF ) = d − dim(F ).
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The Normal Fan: ET Example
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Main Result (Graphical Form)

Entropy plots of the natural space and mean value spaces.
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Main Result (Graphical Form)

Entropy plots of the natural space space with superimposed the normal
fan and of the mean value space.
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Main Result (Colloquial Form)

Pick any θ ∈ Θ, any face F of P and any direction d 6= 0 in the interior of
the normal cone NF .

For a sequence of positive numbers ρn →∞, let θn = θ + ρnd ⊂ Θ

Let µn be the mean value parameter corresponding to θn (i.e.
µn = Eθn [T ] and the sequence {µn} is contained in the interior of P).

Then, limn µn is a point on the boundary of P and in the interior of F ,
which depends only on θ and d .

Conversely, any point on the boundary of the convex support can be
obtained in this way.

Normal Fan and Extended Exponential Families

The normal fan realizes geometrically the closure of the family inside the
natural parameter space.

See Rinaldo, Fienberg and Yi (2009) for the full statement.
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Degeneracy Explained

Degeneracy in action.
MATLAB GUI available at: www.stat.cmu.edu/~arinaldo/ERG/
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Conclusions

Degeneracy can be explained in terms of closures of the exponential
families and using the normal fan to the convex support.

The normal fan to the convex support plays a central role in the
geometry of discrete extended exponential families (see journal article
for more on this).

Nonexistence of the MLE and boundary cases capture essential features
of these models.

The result is general and applies to all discrete exponential families with
polyhedral convex support.
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Thank you
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