Ideals of Graph Homomorphisms

Alex Engström UC Berkeley

AMS Spring Southeastern Sectional Meeting University of Kentucky, March 27-28, 2010 Special Session on Advances in Algebraic Statistics

Ideals of Graph Homomorphisms

- Joint work with Patrik Norén at KTH.
- Funded by the Miller Institute for Basic Research in Science at UC Berkeley.
- This presentation is on my homepage math.berkeley.edu/~alex/
- Based on the preprint "Ideals of Graph Homomorphisms", arXiv:1002.4679
- Scripts for 42 on math.kth.se/~pnore/

Motivation

- The ideals of graph homomorphisms are natural generalizations of toric ideals used in algebraic statistics.
- The polytopes defining the toric ideals of graph homomorphisms are important in optimization theory.
- Graphs and their homomorphisms is a category.
 Instead of just creating toric ideals from graphs, all of the category should be used.
- The ideals of graph homomorphisms could be studied in their on right. They have an amazing amount of beautiful properties.

Ideals from graphs in algebraic statistics

- A statistical model is defined from a graph G
 and random variables for each vertex of G.
- A toric ideal **I(G)** is defined from the model.
- If the graph or the type of random variables is changed, how is that reflected in I(G)?
- If G₁ is a subgraph of G₂, or there is a map from G₁ to G₂, how are I(G₁) and I(G₂) related?

Homomorphisms

- Let Hom(A,B) be the set of maps between the graphs/rings/spaces A and B.
- Any map from A to B induces
 - a map from Hom(C,A) to Hom(C,B), and
 - a map from Hom(B,C) to Hom(A,C).
- If we construct "natural" ideals I_{Hom(,)} on
 Hom(,) then any map from A to B induces
 - a map from $I_{Hom(C,A)}$ to $I_{Hom(C,B)}$, and
 - a map from $I_{Hom(B,C)}$ to $I_{Hom(A,C)}$.

Graph homomorphisms

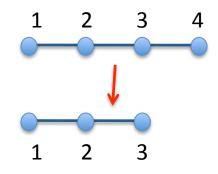
- A graph homomorphism from G to H is a map f from V(G) to V(H) such that if uv is an edge of G then f(u)f(v) is an edge of H.
- Examples of Hom(G,H)
 - H is a complete graph on [n] with all loops: Arbitrary assignment of 1,2,...,n to the vertices.
 - H is a complete graph on [n] without loops:
 n-colorings of G.
 - H is an edge with one loop: The independent sets of G.

Ideals of Graph Homomorphisms

- Let **G** and **H** be graphs. Define polynomial rings:
- $R_{G\to H}=k[r_{\phi}: \phi \text{ is a graph homomorphism} from$ **G**to**H**].
- $S_{G\to H}=k[s_{\phi}:e]$ is an edge of G, and ϕ is a graph homomorphism from e to H].
- Define a ring homomorphism $\Phi_{G\to H}$ from $\mathbf{R}_{G\to H}$ to $\mathbf{S}_{G\to H}$ by sending \mathbf{r}_{ϕ} to the product of $\mathbf{s}_{\phi|e}$ for all edges \mathbf{e} of \mathbf{G} .
- Definition: The *ideal of graph homomorphisms* from **G** to **H**, $I_{G \to H}$, is the kernel of $\Phi_{G \to H}$.

The ideal of the 3-path \rightarrow 2-path

Мар	Variable	Image of Φ
1234→1232	r _{1234→1232}	$S_{12\rightarrow12}S_{23\rightarrow23}S_{34\rightarrow32}$
1234→1212	r _{1234→1212}	$S_{12\rightarrow12}S_{23\rightarrow21}S_{34\rightarrow12}$
1234→2121	r _{1234→2121}	$S_{12\rightarrow21}S_{23\rightarrow12}S_{34\rightarrow21}$
1234→2123	r _{1234→2123}	$S_{12\rightarrow21}S_{23\rightarrow12}S_{34\rightarrow23}$
1234→2321	r _{1234→2321}	$S_{12\rightarrow23}S_{23\rightarrow32}S_{34\rightarrow21}$
1234→2323	r _{1234→2323}	$S_{12\rightarrow23}S_{23\rightarrow32}S_{34\rightarrow23}$
1234→3212	r _{1234→3212}	$S_{12\rightarrow32}S_{23\rightarrow21}S_{34\rightarrow12}$
1234→3232	r _{1234→3232}	$S_{12\rightarrow32}S_{23\rightarrow23}S_{34\rightarrow32}$



Markov basis

 $< r_{1234 \rightarrow 1212} r_{1234 \rightarrow 3232}$ $- r_{1234 \rightarrow 1232} r_{1234 \rightarrow 3212},$ $r_{1234 \rightarrow 2121} r_{1234 \rightarrow 2323} -$

 $r_{1234 \to 2123} r_{1234 \to 2321} >$

Examples of ideals of graph homomorphisms I_{G→H}

- **H** is a complete graph on **[n]** with all loops: Arbitrary assignment of **1,2,...,n** to the vertices. Studied in algebraic statistics.
- H is a complete graph on [n] without loops:
 n-colorings of G. Obstructions of graph colorings.
- **H** is an edge with one loop: The independent sets of **G**. Defined by the stable set polytope. Hibi's ASL rings is a special case.

Examples of some theorems

- Maps between graphs induce maps between ideals (and quotients). Reflects on the Markov width.
- There is a quadratic square-free Gröbner base of $I_{G\rightarrow H}$ if
 - the graph G is a forest, or
 - the graph H is an edge with one loop, and G is (almost) bipartite.
- For H an edge with one loop, any Markov width of I_{G→H} is possible.

Read more about it here

- This presentation is on my homepage math.berkeley.edu/~alex/
- Based on the preprint "Ideals of Graph Homomorphisms", with Patrik Norén, arXiv:1002.4679
- Scripts for 42 on math.kth.se/~pnore/