Ideals of Graph Homomorphisms

Alex Engström
UC Berkeley

AMS Spring Southeastern Sectional Meeting
University of Kentucky, March 27-28, 2010
Special Session on Advances in Algebraic Statistics
Ideals of Graph Homomorphisms

• Joint work with Patrik Norén at KTH.
• Funded by the Miller Institute for Basic Research in Science at UC Berkeley.
• This presentation is on my homepage math.berkeley.edu/~alex/
• Based on the preprint “Ideals of Graph Homomorphisms”, arXiv:1002.4679
• Scripts for 42 on math.kth.se/~pnore/
Motivation

• The ideals of graph homomorphisms are natural generalizations of toric ideals used in algebraic statistics.
• The polytopes defining the toric ideals of graph homomorphisms are important in optimization theory.
• Graphs and their homomorphisms is a category. Instead of just creating toric ideals from graphs, all of the category should be used.
• The ideals of graph homomorphisms could be studied in their on right. They have an amazing amount of beautiful properties.

Alex Engström: Ideals of Graph Homomorphisms
Ideals from graphs in algebraic statistics

• A statistical model is defined from a graph G and random variables for each vertex of G.

• A toric ideal $I(G)$ is defined from the model.

• If the graph or the type of random variables is changed, how is that reflected in $I(G)$?

• If G_1 is a subgraph of G_2, or there is a map from G_1 to G_2, how are $I(G_1)$ and $I(G_2)$ related?
Homomorphisms

• Let $\text{Hom}(A,B)$ be the set of maps between the graphs/rings/spaces A and B.

• Any map from A to B induces
 – a map from $\text{Hom}(C,A)$ to $\text{Hom}(C,B)$, and
 – a map from $\text{Hom}(B,C)$ to $\text{Hom}(A,C)$.

• If we construct “natural” ideals $I_{\text{Hom}(,)}$ on $\text{Hom}(,)$ then any map from A to B induces
 – a map from $I_{\text{Hom}(C,A)}$ to $I_{\text{Hom}(C,B)}$, and
 – a map from $I_{\text{Hom}(B,C)}$ to $I_{\text{Hom}(A,C)}$.

Alex Engström: Ideals of Graph Homomorphisms
Graph homomorphisms

• A graph homomorphism from G to H is a map f from $V(G)$ to $V(H)$ such that if uv is an edge of G then $f(u)f(v)$ is an edge of H.

• Examples of $\text{Hom}(G,H)$
 – H is a complete graph on $[n]$ with all loops: Arbitrary assignment of $1,2,...,n$ to the vertices.
 – H is a complete graph on $[n]$ without loops: n-colorings of G.
 – H is an edge with one loop: The independent sets of G.

Alex Engström: Ideals of Graph Homomorphisms
Ideals of Graph Homomorphisms

• Let G and H be graphs. Define polynomial rings:
 • $R_{G \to H} = k[r_\phi : \phi$ is a graph homomorphism from G to $H].$
 • $S_{G \to H} = k[s_\phi : e$ is an edge of G, and ϕ is a graph homomorphism from e to $H].$

• Define a ring homomorphism $\Phi_{G \to H}$ from $R_{G \to H}$ to $S_{G \to H}$ by sending r_ϕ to the product of $s_{\phi|e}$ for all edges e of G.

• Definition: The ideal of graph homomorphisms from G to H, $I_{G \to H}$, is the kernel of $\Phi_{G \to H}$.

Alex Engström: Ideals of Graph Homomorphisms
The ideal of the 3-path \rightarrow 2-path

<table>
<thead>
<tr>
<th>Map</th>
<th>Variable</th>
<th>Image of Φ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1234→1232</td>
<td>$r_{1234\rightarrow1232}$</td>
<td>$s_{12}\rightarrow12s_{23}\rightarrow23s_{34}\rightarrow32$</td>
</tr>
<tr>
<td>1234→1212</td>
<td>$r_{1234\rightarrow1212}$</td>
<td>$s_{12}\rightarrow12s_{23}\rightarrow21s_{34}\rightarrow12$</td>
</tr>
<tr>
<td>1234→2121</td>
<td>$r_{1234\rightarrow2121}$</td>
<td>$s_{12}\rightarrow21s_{23}\rightarrow12s_{34}\rightarrow21$</td>
</tr>
<tr>
<td>1234→2123</td>
<td>$r_{1234\rightarrow2123}$</td>
<td>$s_{12}\rightarrow21s_{23}\rightarrow12s_{34}\rightarrow23$</td>
</tr>
<tr>
<td>1234→2321</td>
<td>$r_{1234\rightarrow2321}$</td>
<td>$s_{12}\rightarrow23s_{23}\rightarrow32s_{34}\rightarrow21$</td>
</tr>
<tr>
<td>1234→2323</td>
<td>$r_{1234\rightarrow2323}$</td>
<td>$s_{12}\rightarrow23s_{23}\rightarrow32s_{34}\rightarrow23$</td>
</tr>
<tr>
<td>1234→3212</td>
<td>$r_{1234\rightarrow3212}$</td>
<td>$s_{12}\rightarrow32s_{23}\rightarrow21s_{34}\rightarrow12$</td>
</tr>
<tr>
<td>1234→3232</td>
<td>$r_{1234\rightarrow3232}$</td>
<td>$s_{12}\rightarrow32s_{23}\rightarrow23s_{34}\rightarrow32$</td>
</tr>
</tbody>
</table>

Markov basis

$<r_{1234\rightarrow1212}, r_{1234\rightarrow3232}$
$- r_{1234\rightarrow1232}, r_{1234\rightarrow3212}, r_{1234\rightarrow2121}, r_{1234\rightarrow2323},$ $r_{1234\rightarrow2123}, r_{1234\rightarrow2321} >$

Alex Engström: Ideals of Graph Homomorphisms
Examples of ideals of graph homomorphisms $I_{G \rightarrow H}$

- **H** is a complete graph on $[n]$ with all loops: Arbitrary assignment of $1, 2, ..., n$ to the vertices. Studied in algebraic statistics.

- **H** is a complete graph on $[n]$ without loops: n-colorings of G. Obstructions of graph colorings.

- **H** is an edge with one loop: The independent sets of G. Defined by the stable set polytope. Hibi’s ASL rings is a special case.

Alex Engström: Ideals of Graph Homomorphisms
Examples of some theorems

• Maps between graphs induce maps between ideals (and quotients). Reflects on the Markov width.

• There is a quadratic square-free Gröbner base of $I_{G \to H}$ if
 – the graph G is a forest, or
 – the graph H is an edge with one loop, and G is (almost) bipartite.

• For H an edge with one loop, any Markov width of $I_{G \to H}$ is possible.
Read more about it here

• This presentation is on my homepage math.berkeley.edu/~alex/
• Based on the preprint “Ideals of Graph Homomorphisms”, with Patrik Norén, arXiv:1002.4679
• Scripts for 42 on math.kth.se/~pnore/

Alex Engström: Ideals of Graph Homomorphisms