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Independence mixture models

P ∈ RIJ a I × J probability matrix (i.e. non-negative with sum of
the entries one) of the form

P = α1c1r t
1 + . . .+ αkck r t

k

where

ci ∈ RI
≥0,
∑

j

ci(j) = 1, ri ∈ RJ
≥0,
∑

j

ri(j) = 1

and αi ∈ R≥0,
∑
αi = 1.
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Parameterization

P =
∑k

1 αici r t
i is a probability matrix with rk(P) ≤ k .

We are describing probability matrices of rank at most k using

k(I + J)− k − 1

parameters.

Questions

Can we use fewer parameters?

What is the least possible number of parameters?

4/17 E. Carlini Parameterization of mixture independence models



Geometry

ConsiderMk ⊂ RIJ the variety of rank at most k matrices
intersected with the simplex.

A parameterization of probability matrices with rk ≤ k using D
parameters is an algebraic map

RD ⊃ U −→Mk

where U has non-empty interior.
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Geometry

To obtain almost all the elements ofMk we need at least

D ≥ dimMk = k(I + J)− k2 − 1

parameters.
Hence the parameterization

Rk(I+J)−k−1 ⊃ U −→Mk

(α1, . . . , αk , c1(1), . . . , rk (J)) 7→ P =
∑

αici r t
i

is redundant.
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Non-negative rank

A matrix P such that

P =
k∑
1

αici r t
i

where ci ∈ RI
≥0, ri ∈ RJ

≥0 and αi ∈ R≥0 has

non-negative rank at most k

and one writes rk+(P) ≤ k .
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Non-negative rank

The non-negative rank and the rank can be different, i.e. there
are matrices P such that

rk+(P) ≥ rk(P).

Consider, for example

P =


1 0 1 0
0 1 1 0
1 0 0 1
0 1 0 1


where C1 + C2 = C3 + C4 thus rk(P) = 3, but rk+(P) = 4.
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Non-negative rank

Hence the parameterization

P =
k∑
1

αici r t
i

is redundant and, in general, non-surjective.

Theorem(Cohen-Rothblum) If rk(P) = 0,1,2 then

rk+(P) = rk(P).

Thus, for k = 2, P =
∑k

1 αici r t
i is redundant but surjective.
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Non-redundant parameterization for rk=2

We let D = 2(I + J)− 5 and we look for maps

RD ⊃ U −→M2

with a dense image.

Idea:

find Uj1,j2 ⊂ RD with non-empty interior;
find maps fj1,j2 : Uj1,j2 −→M2 such that⋃

j1,j2

Im(Uj1,j2) =M2.
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Non-redundant parameterization for rk=2

We consider the map

f1,2(a,b,c,d, α) = αabt + (1− α)cdt

where the vectors a,c have sum one and the vectors b,d have
a fixed zero entry. The domain is

U1,2 =
{
(a1, . . . ,aI−1,b3, . . . ,bJ , c1, . . . , cI−1,d3, . . . ,dJ , α) ∈ RD :

0 ≤ ai ,bi , ci ,di , α ≤ 1 and 0 ≤
∑

ai ,
∑

bi ,
∑

ci ,
∑

di ≤ 1
}
.
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Non-redundant parameterization for rk=2

Where f1,2 : U1,2 −→M2 is defined as follows

f1,2(a1, . . . ,aI−1,b3, . . . ,bJ , c1, . . . , cI−1,d3, . . . ,dJ , α) =

= α


a1
a2
...

aI−1
1−

∑
ai


(

1−
∑

bi 0 b3 . . . bJ
)
+

+(1− α)


c1
c2
...

cI−1
1−

∑
ci


(

0 1−
∑

di d3 . . . dJ
)
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Non-redundant parameterization for rk=2

Theorem
Im(Uj1,j2) =M2.

Proof Let P be inM2. If rk(P) = 1 then we get P by setting
α = 0 or α = 1. Otherwise rk+(P) = 2 and we choose a and c
accordingly.

Hence the maps

fj1,j2 : R2(I+J)−5 −→M2

give a non-redundant parameterization of the wholeM2 and no
fewer parameters can be used.
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Application

Given a map
F :M2 −→ R

we want maximize/minimize F , i.e. we want to solve an
optimization problem on rank two probability matrices.

E.g. F can be the likelihood function and we want to solve the
maximun likelihood problem.
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Application

Theorem If fj1,j2(P
′) = P is a rank two matrix without two

proportional columns, then

P is a maximum/minimum of F

iff

P ′ is a maximum/minimum of F ◦ fj1,j2 .
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Application

If fj1,j2(P
′) = P ∈ Uj1,j2 is a rank two matrix with at least two

proportional columns then

P ′ is point of the boundary of Uj1,j2

but

fj1,j2(P
′) is not a point of the boundary ofM2.

Hence the study of F ◦ fj1,j2 is not enough.
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Idea to maximize F onM2:

study F on rank one matrices
maximize F ◦ fj1,j2 for all pairs (j1, j2) and make a list L of
candidates extremal points
if P ∈ L has not two proportional columns, then F (P) is a
maximum
if P ∈ L has proportional columns it belongs to Imfj1,j2 for
different pairs (j1, j2)
we study the extremal behaviour of all the functions

F ◦ fj1,j2

at all the point P ′ ∈ Uj1,j2 such that fj1,j2(P
′) = P.

If these behaviors agree, then F (P) is a maximum,
otherwise it is not.
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