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Statistical models for contingency tables

A probability distribution for an I × J contingency table is a
non-negative normalized matrix P = (pi,j), i.e., is a point of the
closed simplex

∆ =

P = (pi,j) : pi,j ≥ 0 ,
∑
i,j

pi,j = 1

 .

Definition
A statistical model is a subset of ∆.
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Toric models

In a toric model, the raw probabilities of the cells are defined
(apart from normalization) in parametric form as power
products:

pi,j =
s∏

h=1

ζ
A(i,j),h
h

where ζ1, . . . , ζs are non-negative real parameters.

The structure of the toric model is encoded in an IJ × s
non-negative integer matrix A.

Given an observed contingency table f (table of counts), it is
easy to see that At f is the sufficient statistic.
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Invariants

Eliminating the ζ parameters from the system:

pi,j =
s∏

h=1

ζ
A(i,j),h
h

one obtains the toric ideal

IA ⊂ R[p] = R[p1,1, . . . ,pI,J ]

associated to the statistical model.

The ideal IA is generated by pure binomials.

The polynomials in IA are the invariants of the model.
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Markov bases

A Markov basis for the statistical toric model defined by the
matrix A is a finite set of tables m1, . . . ,m` ∈ ZIJ that allows us
to connect any two contingency tables f1 and f2 in the same
fiber, i.e. such that At (f1) = At (f2), with a path of elements of
the fiber.

The path is therefore formed by tables of non-negative counts
with constant image under At (the sufficient statistic).
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Markov bases and invariants

The relation between the Markov basis and the toric ideal IA is
known.

Theorem
The set of moves {m1, . . . ,m`} is a Markov basis if and only if
the set {pm1+ − pm1−, i = 1, . . . , `} generates the ideal IA.

Usually this theorem is used in its “if” part to deduce Markov
bases from the computation of a system of generators of a toric
ideal.

For our study, we will make use of this theorem in its “only if”
implication.
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The independence model

Given:
I non-negative row parameters ζ(r)

1 , . . . , ζ
(r)
I ;

J non-negative column parameters ζ(c)
1 , . . . , ζ

(c)
J ;

the independence model is parametric form is:

M = {pi,j = ζ
(r)
i ζ

(c)
j , 1 ≤ i ≤ I, 1 ≤ j ≤ J} ∩∆ .

In implicit form, this translates into:

M′ = {pi,jpk ,h−pi,hpk ,j = 0 , 1 ≤ i < k ≤ I, 1 ≤ j < h ≤ J}∩∆ .

Remark
In the open simplex ∆>0,M =M′.

M andM′ are in general different on the boundary ∆ \∆>0.
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Diagonal-effect models in toric form

Let us consider I × I (square) tables.

Definition
The diagonal-effect modelM1 is defined as the set of
probability matrices P ∈ ∆ such that:

pi,j = ζ
(r)
i ζ

(c)
j for i 6= j

pi,j = ζ
(r)
i ζ

(c)
j ζ

(γ)
i for i = j

where ζ(r), ζ(c) and ζ(γ) are non-negative vectors with length I.
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Theorem
The invariants of the modelM1 are the binomials

pi,jpi ′,j ′ − pi,j ′pi ′,j

for i , i ′, j , j ′ all distinct, and

pi,i ′pi ′,i ′′pi ′′,i − pi,i ′′pi ′′,i ′pi ′,i

for i , i ′, i ′′ all distinct.
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Sketch of the proof. In Aoki and Takemura (2005) it is shown
that a minimal Markov basis for the modelM1 is formed by:
(a) The basic degree 2 moves:

j j ′

i +1 −1
i ′ −1 +1

with i , i ′, j , j ′ all distinct, for I ≥ 4;
(b) The degree 3 moves of the form:

i i ′ i ′′

i 0 +1 −1
i ′ −1 0 +1
i ′′ +1 −1 0

with i , i ′, i ′′ all distinct, for I ≥ 3.
Thus, it is enough to write such moves in polynomial form.
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Diagonal-effect models in mixture form

Definition
The diagonal-effect modelM2 is defined as the set of
probability matrices P such that

P = αcr t + (1− α)D

where r and c are non-negative vectors with length I and sum
equal to one, D = diag(d1, . . . ,dI) is a non-negative diagonal
matrix with sum equal to one, and α ∈ [0,1].

Remark
While in the toric definition the normalization is applied once, in
the mixture definition the normalization is applied twice.

12/21 F. Rapallo Toric vs mixture models



Toric models, Markov bases, and invariants
Diagonal-effect models in toric form

Diagonal-effect models in mixture form
Concluding remarks

Some geometry

Theorem
The modelsM1 andM2 have the same invariants.

Proof. The proof is based on the properties of the elimination
technique.

The non-negativity conditions imply thatM1 6=M2 and

Theorem
NeitherM2 ⊂M1 norM1 ⊂M2.

We see this with two examples.
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First example

P =



0 1
I(I−1)

1
I(I−1) . . . 1

I(I−1)
1

I(I−1) 0 1
I(I−1) . . . 1

I(I−1)
1

I(I−1)
1

I(I−1) 0 . . . 1
I(I−1)

...
...

...
...

...
1

I(I−1)
1

I(I−1)
1

I(I−1) . . . 0

 .

P ∈M1 by constructions, while it does not belong toM2 (easy
to check).
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Second example

P =


1
I 0 0 . . . 0
0 1

I 0 . . . 0
0 0 1

I . . . 0
...

...
...

...
...

0 0 0 . . . 1
I

 .

P ∈M2, by setting α = 0 and D = diag(1/I, . . . ,1/I), while it
does not belong toM1 (once again, easy to check).
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Other results in the open simplex

Theorem
In the open simplex

∆>0 =

P = (pi,j) : pi,j > 0 ,
∑
i,j

pi,j = 1


the following inclusion holds:

M2 ⊂M1 .

With some polynomial manipulations we are also able to
characterize the setM1 \M2.
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Theorem
Let P ∈M1 ∩∆>0 be a strictly positive probability table given
by the vectors ζ(r), ζ(c) and ζ(γ). Define:

NT =
∑

i 6=j ζ
(r)
i ζ

(c)
j +

∑
i=j ζ

(r)
i ζ

(c)
j ζ

(γ)
i

N =
∑

i,j ζ
(r)
i ζ

(c)
j .

Then P ∈M1 \M2 if one of the following situations holds:

(i) NT < N;
(ii) NT = N and there exists at least an index i such that

ζ
(γ)
i 6= 1;

(iii) NT > N and there exists at least an index i such that
ζ
(γ)
i < 1.
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Maximum likelihood estimation

Theorem
For an independent sample of size n, the modelsM1 andM2
have the same sufficient statistic.

Nevertheless the MLE can differ. Consider the table
2 1 1 1
1 2 1 1
1 1 2 1
1 1 1 2

 .

In this case, the normalized observed table belongs toM1 and
toM2, and thus the MLE is equal to the observed table for both
models.
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On the other hand, consider the following observed table
1 2 2 2
2 1 2 2
2 2 1 2
2 2 2 1

 .

After normalization, this table belongs toM1 and thus under
the toric model, the MLE is again equal to the observed table.
However, the table does not belong toM2 and (with symmetry
arguments), the MLE is the rank-one table

1
16


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 .
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Concluding remarks

The modelsM1 (toric) andM2 (mixture) have the same
invariants, but they are “essentially” different.
Here “essentially” means: “not only on the boundary”.
Therefore, we also have a different behavior in terms of
maximum likelihood estimation.
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Thank you!

The complete manuscript is available at
http://arxiv.org/abs/0908.0232.

(In press on the AMS Contemporary Mathematics volume
“Algebraic Methods in Statistics and Probability II”)
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