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The problem

• We want to fit a hierarchical loglinear model to some
discrete data given under the form of a contingency table.

• We put the Diaconis-Ylvisaker conjugate prior on the
loglinear parameters of the multinomial distribution for the
cell counts of the contingency table.

• We study the behaviour of the Bayes factor as the
hyperparameter α of the conjugate prior tends to 0

• We are led to study the convex hull C of the support of the
multinomial distribution.

• The faces of C are the most important objects in this
study.
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The data in a contingency table

• N objects are classified according to |V |criteria.

• We observe the value of X = (Xγ | γ ∈ V ) which takes its
values (or levels) in the finite set Iγ.

• The data is gathered in a |V |-dimensional contingency
table with

|I| = ×γ∈V |Iγ | cells i.

• The cell counts (n) = (n(i), i ∈ I) follow a
multinomial M(N, p(i), i ∈ I)distribution.

• We denote iE = (iγ , γ ∈ E) and n(iE) respectively the
marginal-E cell and cell count.
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The saturated loglinear model

We change the parametrization from p(i), i ∈ I to
θE
i =

∑

F⊂E(−1)|E\F | log p(iF , 0F c) so that

log p(i) =
∑

E⊆V

θE
i ,

where all possible interactions are taken into account.
We impose the baseline constraints: consider a special cell
i∗ = 0 = (0, 0, . . . , 0). Then, we impose

θE
i = 0 if, for at least one γ ∈ E, iγ = 0.

For each i ∈ I, we define S(i) = {γ ∈ V : iγ 6= 0}.
The loglinear model becomes

log p(i) =
∑

E⊆S(i)

θE
i = θ∅i +

∑

E⊆S(i),E 6=∅

θE
i .
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The hierarchical loglinear model

• Let A = {A1, . . . , Ak} be a class of subsets of V such that
∀i, j, Ai 6⊆ Aj, and let

D = {E 6= ∅, E ⊆ Ai, for some i = 1, . . . , k}

The hierarchical loglinear model with generating class A is

log p(i) = θ∅i +
∑

F⊆S(i),F∈D

θF
i .

• Let us introduce some convenient notation:

J = {j ∈ I, j 6= 0 = (0, . . . , 0), S(j) ∈ D}

for i ∈ I, j ⊳ i if S(j) ⊆ S(i), and jS(j) = iS(j)

Ji = {j ∈ J, j ⊳ i}
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Example

Consider the hierarchical model with

V = {a, b, c}, A = {{a, b}, {b, c}}, Ia = {0, 1, 2} = Ib, Ic = {0, 1},

and i = (0, 2, 1). We have

D = {a, b, c, ab, bc}

J = {(1, 0, 0), (2, 0, 0), (0, 1, 0), (0, 2, 0), (0, 0, 1), (1, 1, 0), (1, 2, 0),

(2, 1, 0), (2, 2, 0), (0, 1, 1), (0, 2, 1)}

Ji = {(0, 2, 0), (0, 0, 1), (0, 2, 1)}

log p(0, 2, 1) = θ∅i +
∑

E⊆S(i),E 6=∅

= θ∅(0,2,1) + θb
(0,2,1) + θc

(0,2,1) + θ
b,c

(0,2,1)

= θ(0,0,0) + θ(0,2,0) + θ(0,0,1) + θ(0,2,1)

= θ0 +
∑

j∈Ji

θj
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The multinomial hierarchical model

Since J = ∪i∈IJi, the loglinear parameter is

θJ = (θj , j ∈ J).

The hierarchical model is characterized by J . For i 6= 0, the
loglinear model can then be written

log p(i) = θ0 +
∑

j∈Ji

θj

with log p(0) = θ0. Therefore

p(0) = eθ0 = (1 +
∑

i∈I\{0}

exp
∑

j∈Ji

θj)
−1 = L(θ)−1

and
∏

i∈I

p(i)n(i) =
1

L(θ)N
exp{

∑

j∈J

n(jS(j)θj} = exp{
∑

j∈J

n(jS(j))θj + Nθ0}.
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The model as an exponential family

Make the change of variable

(n) = (n(i), i ∈ I\{0}) 7→ t = (t(iE) = n(iE), E ⊆ V \{∅}, i ∈ I\{0}).

Then
∏

i∈I p(i)n(i) becomes

f(tJ |θJ) = exp







∑

j∈J

n(jS(j))θj − N log(1 +
∑

i∈I\{0}

exp
∑

j∈Ji

θj)







=
exp 〈θJ , tJ〉

L(θJ)N
with θJ = (θj , j ∈ J), tJ = (n(jS(j), j ∈ J)

and L(θJ) = (1 +
∑

i∈I\{0} exp
∑

j∈Ji
θj).

It is an NEF of dimension |J |, generated by the following
measure.
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The generating vectors

The set of functions from J to R is denoted by RJ and we
write any function h ∈ RJ as h = (h(j), j ∈ J), which we can
think of as a |J | dimensional vector in R|J |. Let (ej , j ∈ J) be
the canonical basis of RJ and let

fi =
∑

j∈J,j⊳i ej , i ∈ I.

D 0 a b c ab ac bc abc
a 0 1 0 0 1 1 0 1
b 0 0 1 0 1 0 1 1
c 0 0 0 1 0 1 1 1

ab 0 0 0 0 1 0 0 1
bc 0 0 0 0 0 0 1 1
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The measure

We note that in our example RI is of dimension 8 while RJ

is of dimension 5 and the (fj , j ∈ J) are, of course,
5-dimensional vectors. Consider now the counting measure
in RJ

µJ = δ0 +
∑

i∈I

δfi
.

For θ ∈ RJ , the Laplace transform of µJ is
∫

RJ

e〈θ,x〉µJ(dx) = 1+
∑

i∈I\{0}

e〈θ,fi〉 = 1+
∑

i∈I\{0}

e
∑

j⊳i
θj = L(θ).

Therefore the multinomial f(tJ |θJ) = exp〈θJ ,tJ〉
L(θJ)N is the NEF

generated by µ∗N
J .
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CJ : The convex hull of the support of µJ

Since µJ = δ0 +
∑

i∈I δfi
,

CJ is the open convex hull of 0 ∈ RJ and fj , j ∈ J .

It is important to identify this convex hull since Diaconis and
Ylvisaker (1974) have proven that the conjugate prior to an
NEF, defined by

π(θJ |mJ , α) =
1

I(mJ , α)
e{α〈θJ ,mJ〉−α log L(θJ)}

is proper when the hyperparameters mJ ∈ RJ and α ∈ R

are such that
α > 0 and mJ ∈ CJ .
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The DY conjugate prior

Clearly, we can write the multinomial density as
f(tJ |θJ) = f(tJ |θJ , J) where J represents the model.
Assuming we put a uniform discrete distribution on the set
of models,the joint distribution of J, tJ , θJ is

f(J, tJ , θJ) ∝
1

I(mJ , α)
e{〈θJ ,tJ+αmJ〉−(α+N) log L(θJ)}

and therefore the posterior density of J given tJ is

h(J |tJ) ∝
I( tJ+αmJ

α+N , α + N)

I(mJ , α)
.
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The Bayes factor between two models

Consider two hierarchical models defined by J1 and J2. To
simplify notation, we will write

h(Jk|tJk
) ∝

I( tk+αmk

α+N , α + N)

I(mk, α)
, k = 1, 2

so that the Bayes factor is

I(m2, α)

I(m1, α)
×

I( t1+αm1

α+N , α + N)

I( t2+αm2

α+N , α + N)
.

We will consider two cases depending on whether
tk

N ∈ Ck, k = 1, 2 or not.
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The Bayes factor between two models

When α → 0, if tk

N ∈ Ck, k = 1, 2, then

I( t1+αm1

α+N , α + N)

I( t2+αm2

α+N , α + N)
→

I( t1
N , N)

I( t2
N , N)

which is finite. Therefore we only need to worry about
lim I(m2,α)

I(m1,α) when α → 0.

When α → 0, if tk

N ∈ C̄k \Ck, k = 1, 2, then, we have to worry
about both limits.
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Limiting behaviour of I(m, α)

Definitions. Assume C is an open nonempty convex set in
Rn.

• The support function of C is hC(θ) = sup{〈θ, x〉 : x ∈ C}

• The characteristic function of C:
JC(m) =

∫

Rn e〈θ,m〉−hC(θ)dθ

Examples of JC(m)

• C = (0, 1). Then hC(θ) = θ if θ > 0 and hC(θ) = 0 if θ ≤ 0.
Therefore hC(θ) = max(0, θ) and

JC(m) =

∫ 0

−∞
eθmdθ +

∫ +∞

0
eθm−θdθ =

1

m(1 − m)
.
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Limiting behaviour of I(m, α)

Examples of JC(m)

• C is the simplex spanned by the origin and the canonical
basis {e1, . . . , en} in Rn and m =

∑n
i=1 miei ∈ C. Then

JC(m) =
n!Vol(C)
∏n

j=0 mi

=
1

∏n
j=0 mi(1 −

∑n
j=0 mi)

.

• J = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (0, 1, 1)} with C
spanned by fj , j ∈ J and m =

∑

j∈J mjfj. Then

JC(m) =
m(0,1,0)(1 − m(0,1,0))

DabDbc

Dab = m(1,1,0)(m(1,0,0) − m(1,1,0))(m(0,1,0) − m(1,1,0))(1 − m(1,0,0) − m(0,1,0) + m(1,1,0))

Dbc = m(0,1,1)(m(0,0,1) − m(0,1,1))(m(0,1,0) − m(0,1,1))(1 − m(0,0,1) − m(0,1,0) + m(0,1,1))
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Limiting behaviour of I(m, α)

Theorem

Let µ be a measure on Rn,n = |J |, such that C the interior
of the convex hull of the support of µ is nonempty and
bounded. Let m ∈ C and for α > 0, let

I(m,α) =

∫

Rn

eα〈θ,m〉

L(θ)α
dθ.

Then
limα→0α

nI(m,α) = JC(m).

Furthermore JC(m) is finite if m ∈ C.
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Limit of the Bayes factor

Let models J1 and J2 be such that |J1| > |J2| and the
marginal counts ti

N are both in Ci. Then the Bayes factor

I(m2, α)

I(m1, α)

I( t1+αm1

α+N , α + N)

I( t2+αm2

α+N , α + N)
∼ α|J1|−|J2|

I( t1
N , N)

I( t2
N , N)

Therefore the Bayes factor tends towards 0, which indicates
that the model J2 is preferable to model J1.

We proved the heuristically known fact that taking α small
favours the sparser model.

We can say that α close to "0 " regularizes the model.
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Some comments

If ti

N are both in Ci, i = 1, 2 and |J1| 6= |J2|, we need not
compute JC(m).

If ti

N are both in Ci, i = 1, 2 and |J1| = |J2|, then we might
want to compute JC(mi)i = 1, 2 . In this case, we have a few
theoretical results. We define the polar convex set C0 of C

C0 = {θ ∈ Rn ; 〈θ, x〉 ≤ 1 ∀x ∈ C}

then

• JC(m)
n! = Vol(C − m)0

• If C in Rn is defined by its K (n − 1)-dimensional faces
{x ∈ Rn : 〈θk, x〉 = ck}, then for D(m) =

∏K
k=1(〈θk, x〉 − ck),

D(m)JC(m) = N(m)

where degree of N(m) is ≤ K. Lexington March 2010 – p. 19



Limiting behaviour of I(αm+t
α+N

, α + N)

We now consider the case when t
N belongs to the boundary

of C. Then each face of C̄ of dimension |J | − 1 is of the form

Fg = {x ∈ C̄ : g(x) = 0}

where g be an affine form on RJ .

Theorem

Suppose t
N ∈ C̄ \ C belongs to exactly M faces of C̄. Then

limα→0α
min(M,|J |)I(

αm + t

α + N
,α + N)

exists and is positive.
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The Bayes factor

Combining the study of the asymptotic behaviour of I(m,α)

and I(αm+t
α+N , α + N), we obtain that

when α → 0, the Bayes factor behaves as follows

I(m2, α)

I(m1, α)

I( t1+αm1

α+N , α + N)

I( t2+αm2

α+N , α + N)

∼ Cα|J1|−|J2|−[min(M1,|J1|)−min(M2,|J2|)]JC1
(m1)

JC2
(m2)

where C is a positive constant.
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Some faces of C for graphical models

For graphical models, let C be the set of cliques of the graph
G.

For each D ∈ C and each j0 ∈ J such that S(j0) ⊂ D define

g0,D =
∑

j;S(j)⊂D

(−1)|S(j)|ej

gj0,D(m) =
∑

j;S(j)⊂D, j0⊳j

(−1)|S(j)|−|S(j0)|ej

and the affine forms

g0,D(t) = 1 + 〈g0,D, t〉

gj0,D(t) = 〈gj0,D, t〉.

Lexington March 2010 – p. 22



Some faces of C

All subsets of the form

F (j,D) = H(j,D) ∩ C

with

H(j,D) = {t ∈ RJ ; gj,D(t) = 0}, D ∈ C, S(j) ⊂ D

are faces of C

Example a −−− b −−− c. The faces are

tab = 0, ta − tab = 0, tb − tab = 0, 1 − ta − tb + tab = 0

and

tbc = 0, tb − tbc = 0, tc − tbc = 0, 1 − tb − tc + tbc = 0.
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The faces of C when G is decomposable

For decomposable models,

H(j,D) = {m ∈ RJ ; gj,D(m) = 0}, D ∈ C, S(j) ⊂ D

are the only faces of C.
Example a −−− b −−− c. The faces are

tab = 0, j = (1, 1, 0) ta − tab = 0, j = (1, 0, 0)

tb − tab = 0, j = (0, 1, 0) 1 − ta − tb + tab = 0, S(j) = ∅

tbc = 0, j = (0, 1, 1) tb − tbc = 0, j = (0, 1, 0)

tc − tbc = 0, j = (0, 0, 1) 1 − tb − tc + tbc = 0S(j) = ∅.
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Some faces when G is a cycle

Theorem Let G = (V,E) be a cycle of order n. Let (a, b) be
an edge of the cycle. Then the hyperplanes

〈sab, t〉 = −ta − tb + 2tab +
∑

c

tc −
∑

e∈E

te =

{

0

an

where an = n−1
2 if n is odd and an = n−2

2 when n is even,
define faces of C.
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Example of model search

We study the Czech Autoworkers 6-way table from Edwards
and Havranek (1985).

This cross-classfication of 1841 men considers six potential
risk factors for coronary trombosis:
• a, smoking;
• b, strenuous mental work;
• c, strenuous physical work;
• d, systolic blood pressure;
• e, ratio of beta and alpha lipoproteins;
• f , family anamnesis of coronary heart disease.

Edwards and Havranek (1985) use the LR test and
Dellaportas and Forster (1999) use a Bayesian search with
normal priors on the θ to analyse this data.
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Czech Autoworkers example our method

We use a Bayesian search with

MC3

our prior with α = 1, 2, 3, 32 and then α = .05, .01 and
equal fictive counts for each cell

The Laplace approximation to the marginal likelihood
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Czech Autoworkers example

Search α = 1 α = 2

Dec. bc|ace|ade|f 0.250 bc|ace|ade|f 0.261

bc|ace|de|f 0.104 bc|ace|de|f 0.177

bc|ad|ace|f 0.102 bc|ace|de|bf 0.096

ac|bc|be|de|f 0.060 bc|ad|ace|f 0.072

bc|ace|de|bf 0.051 bc|ace|de|bf 0.065

bc|ace|de|f med bc|ad|ace|de|f med

Graph. ac|bc|be|ade|f 0.301 ac|bc|be|ade|f 0.341

ac|bc|ae|be|de|f 0.203 ac|bc|be|ade|bf 0.141

ac|bc|be|ade|bf 0.087 ac|bc|ae|be|de|f 0.116

ac|bc|ad|ae|be|f 0.083 ac|bc|be|ade|ef 0.059

ac|bc|ae|be|de|bf 0.059

ac|bc|ad|ae|be|de|f med ac|bc|be|ade|f med

Hierar. ac|bc|ad|ae|ce|de|f 0.241 ac|bc|ad|ae|ce|de|f 0.175

ac|bc|ad|ae|be|de|f 0.151 ac|bc|ad|ae|be|de|f 0.110

ac|bc|ad|ae|be|ce|de|f 0.076 ac|bc|ad|ae|be|ce|de|f 0.078

ac|bc|ad|ae|ce|de|bf 0.070 ac|bc|ad|ae|ce|de|bf 0.072

ac|bc|ad|ae|ce|de|f med ac|bc|ad|ae|be|ce|de|f med
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Results for α close to 0

Search α = .5 α = .01

Hierar. ac|bc|ad|ae|ce|de|f 0.3079 ac|bc|ad|ae|ce|de|f 0.2524

ac|bc|ad|ae|be|de|f 0.1926 ac|bc|ad|ae|be|de|f 0.1577

ac|bc|ad|ae|be|ce|de|f 0.0686 ac|bc|ae|ce|de|f 0.1366

ac|bc|ad|ae|ce|de|be 0.0631 ac|bc|d|ae|ce|f 0.1168

ac|bc|ad|ae|ce|de|f med ac|bc|ae|de|f 0.0854

ac|bc|c|ae|be|f 0.0730

ac|bc|ad|ae|ce|f 0.0558

Recall that for α = 1, 2, the most probable model was
ac|bc|ad|ae|ce|de|f with respective probablities 0.241 and
0.175.

As α 7→ 0, the models become sparser but are consistent
with those corresponding to larger values of α.
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Another example

32 3 86 2 56 35 7 0

130 12 59 5 142 91 5 0

Marginal a, b, d, h table from the Rochdale data in
whittaker1990. The cells counts are written in
lexicographical order with h varying fastest and a varying
slowest.
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The three models considered
We will consider three models J0, J1 and J2 such that

(a) J0 is decomposable with cliques {a, d}, {d, b}, {b, h} so
that D as defined in Section 2 is

D0 = {a, b, d, h, (ad), (db), (bh)}, |J0| = 7, M0 = 0.

(b) J1 is a hierarchical model with generating set
{(ad), (bd), (bh), (dh)}. This is not a graphical model and

D1 = {a, b, d, h, (ad), (db), (bh), (dh)}, |J1| = 8 M1 = 0.

(c) J2 is decomposable with cliques {b, d, h}, {a},and

D2 = {a, b, d, h, (ad), (db), (bh), (dh), (bdh)}, |J2| = 8, M2 = 1.
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Asymptotics of B1,0 and B2,0

We have

B1,0 ∼ α|J0|−|J1|−[min(M0,|J0|)−min(M1,|J1|)]JC1
(m1)

JC0
(m0)

= C1,0α
(7−8−(0−0) = Cα−1

B2,0 ∼ α|J0|−|J2|−[min(M0,|J0|)−min(M2,|J2|)]JC2
(m2)

JC0
(m0)

= C2,0α
(7−8−(0−1) = C2,0α

0 = C2,0
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The graphs
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