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* average of gene trees = species tree ¢




Comparing brains

With Steve Marron, Ipek Oguz , Scott Provan, Martin Styner (all UNC)
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* how do we compare trees to determine
changes in brain due to aging or disease?
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Goal

* goal:

» compute a meaningful average of a set
of metric trees

* mefric tree parameters:
* tree topology
* edge lengths

* so not a standard statistical problem!



Tree Space Framework

continuous, polyhedral space of phylogenetic trees

* Geometry of the space of phylogenetic trees, Billera,
Holmes, and Yogtmann, 2001.

= tree complex

* Shellability of complexes of trees, Trappmann and
Ziegler, 1998.

* The tree representation of 0,+1, Robinson and

Whitehouse, 1996.
+ metric (geodesic distance)

* computable in polynomial time (Owen and Provan, 2009)




Tree Space 1,

* trees in T, have:

* n leaves

* interior edges with lengths 20




Splits

* each interior edge induces a split
* a split is a partition of the set of
leaves plus the root O:

es ={ {B,C}, {0,AE,D} }
or e3 =BC | OAED




Split Compatibility

* ex = X| X' is compatible with e, = Y|Y' if
there exists a tree containing both splits

2 A
°3 \D £ ex. e3 = BC | OAED is compatible
with e2 = BCD | OAE
but not with f = AB | OCDE
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Orthants
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Structure of 1,
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Structure of 1,




I, is CAT(O)

* CAT(0) space (non-positively curved)
= unique geodesic (shortest path

between two points)

= well-defined mid-point tree

* geodesic distance = length of geodesic
between two trees T1 and Ty, in

* computable in polynomial time O(n*)
(Owen and Provan, 2010)




Average or Mean Trees

° mean tree
= center of mass of given set of trees

= tree T’ minimizing sum of square geodesic
distances from T’ to each tree in a given set 7

mean tree = argmin Z d(T7 T,>2
' rer




Mean Trees

Theorem (Sturm, 2003): the following
algorithm converges to the mean tree:

®* mo =T
e ith iteration:

* randomly choose tree Ti from given set
1
1+ 1

° m; = (geodesic from mi; to T)
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Mean Trees

* combinatorial type of the geodesic to a fixed
tree T induces a polyhedral subdivision on tree
space

* use non-linear optimization to improve Sturm’s
algorithm:

* once in correct polyhedral subdivision,
gradient descent method will give minimum




Current and Future Work

* determine convergence of algorithm
* grouping similar trees using Principal
Component Analysis

* using the geodesic distance and tree
space to do statistics on trees




Thank You

* A fast algorithm for computing geodesic distances
in tree space (Owen and Provan, 2010)

hitp://arxiv.org/abs/0907.3942
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