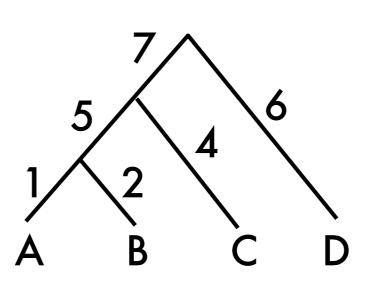
# Averaging Metric Trees

Ezra Miller Megan Owen Scott Provan

Duke NCSU/SAMSI UNC

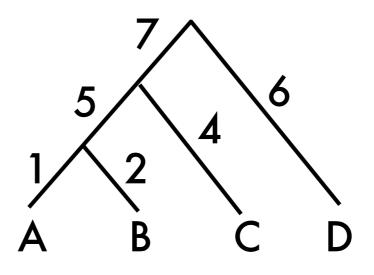
# Phylogenetic Trees

#### • a metric tree:

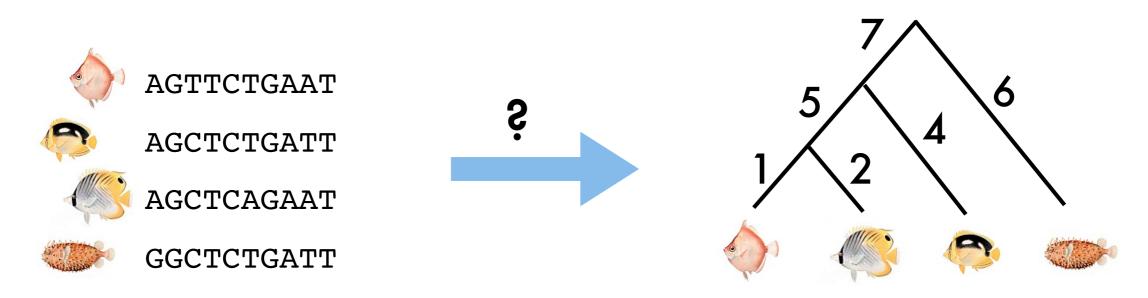


# Phylogenetic Trees

#### • a metric tree:

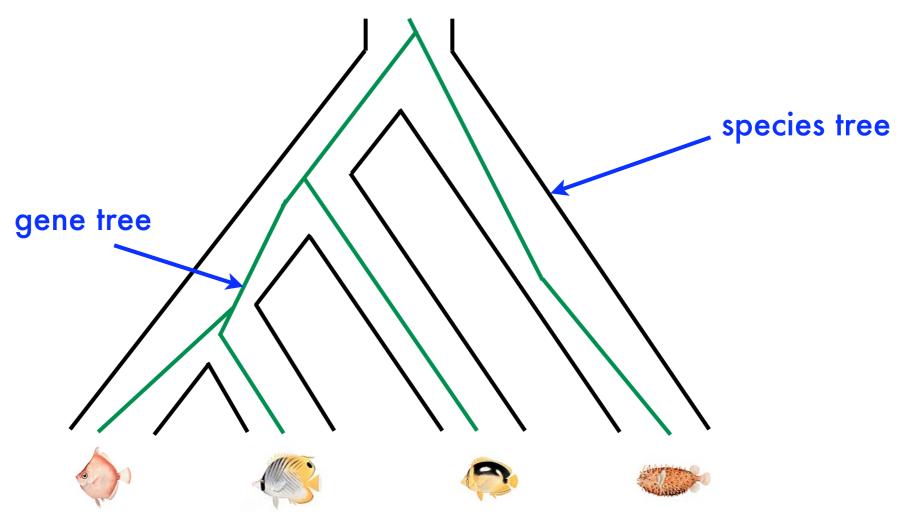


#### • a phylogenetic tree:



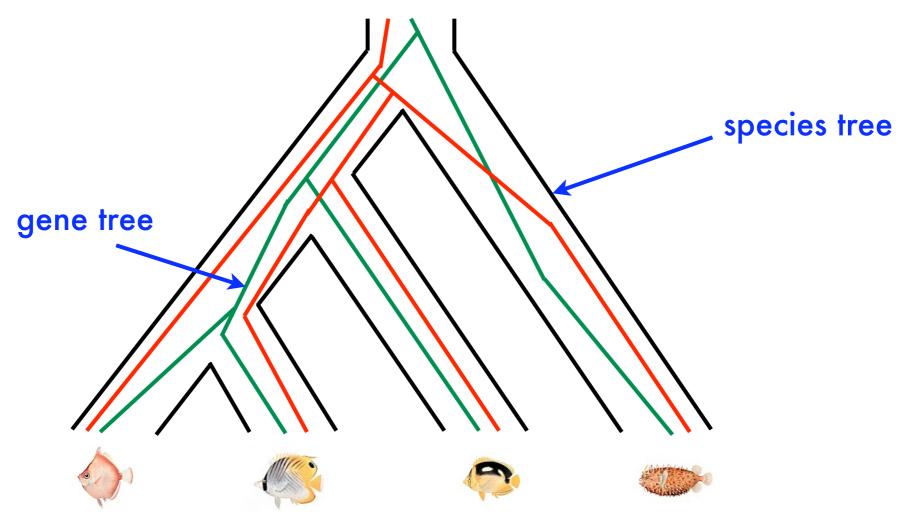
# Gene and Species Trees

 want species trees, but DNA gives us gene trees



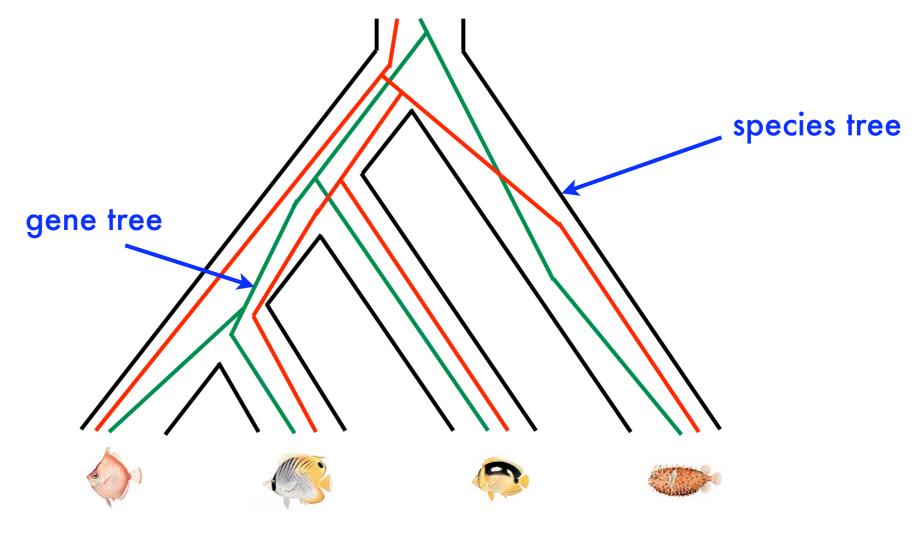
# Gene and Species Trees

 want species trees, but DNA gives us gene trees



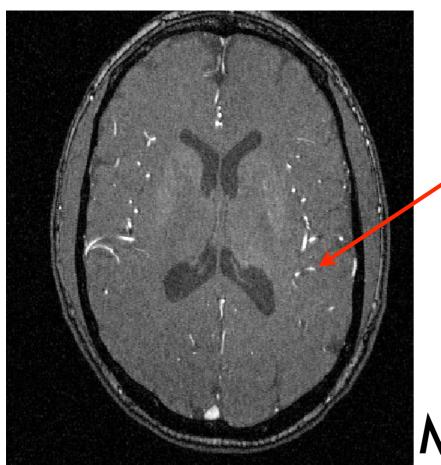
# Gene and Species Trees

 want species trees, but DNA gives us gene trees



• average of gene trees = species tree ?

## Comparing brains



With Steve Marron, Ipek Oguz, Scott Provan, Martin Styner (all UNC)

#### blood vessel

MRI scans →

tree representing arteries in a brain

- how do we compare trees to determine changes in brain due to aging or disease?
  - moving average

Figures from Steve Marron



- goal:
  - compute a meaningful average of a set of metric trees

- metric tree parameters:
  - tree topology
  - edge lengths
- so not a standard statistical problem!

### Tree Space Framework

#### continuous, polyhedral space of phylogenetic trees

 Geometry of the space of phylogenetic trees, Billera, Holmes, and Vogtmann, 2001.

#### = tree complex

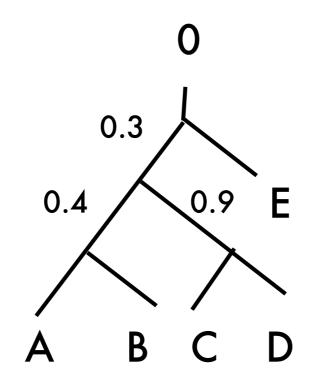
- Shellability of complexes of trees, Trappmann and Ziegler, 1998.
- The tree representation of  $\sigma_{n+1}$ , Robinson and Whitehouse, 1996.

#### + metric (geodesic distance)

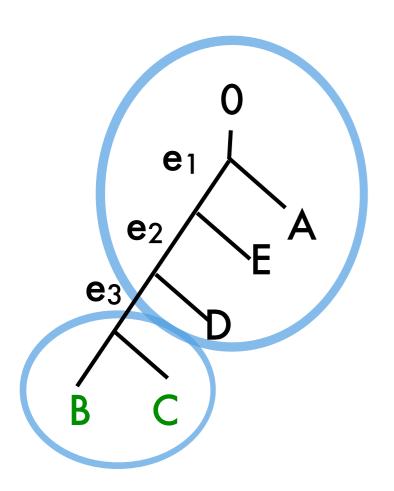
computable in polynomial time (Owen and Provan, 2009)

## Tree Space $\mathbb{T}_n$

- trees in  $\mathbb{T}_n$  have:
  - n leaves
  - interior edges with lengths ≥0







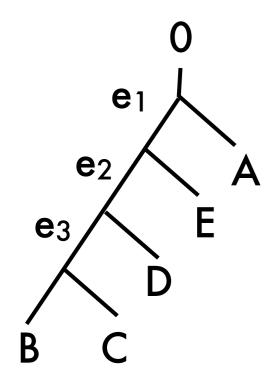
each interior edge induces a split
a split is a partition of the set of leaves plus the root 0:

$$e_3 = \{ \{B,C\}, \{0,A,E,D\} \}$$

or  $e_3 = BC \mid OAED$ 

## Split Compatibility

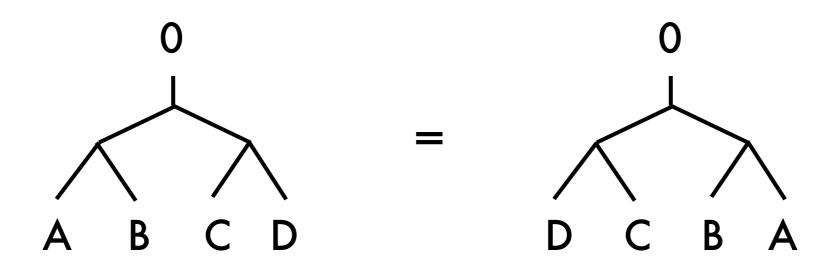
 e<sub>x</sub> = X | X' is compatible with e<sub>y</sub> = Y | Y' if there exists a tree containing both splits



ex.  $e_3 = BC \mid OAED$  is compatible with  $e_2 = BCD \mid OAE$ but not with  $f = AB \mid OCDE$ 

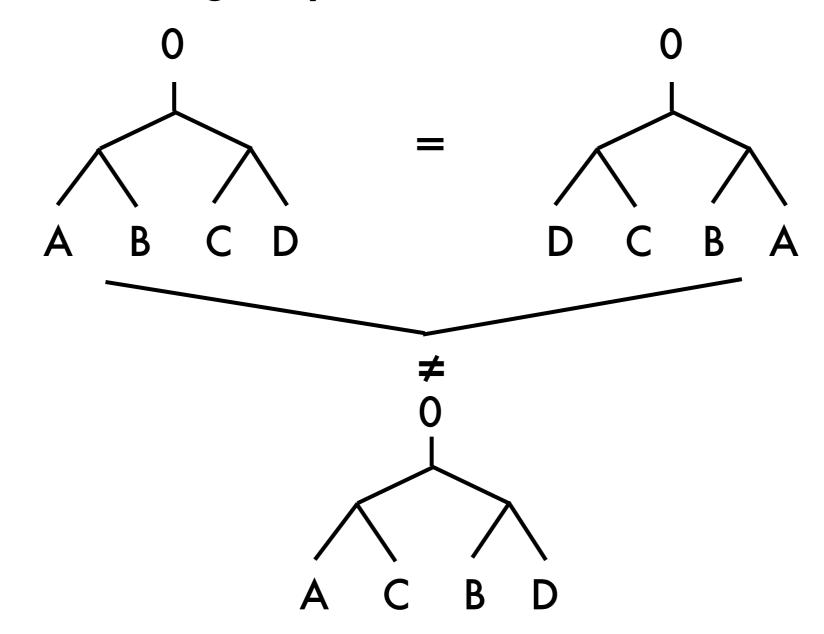
#### The trees

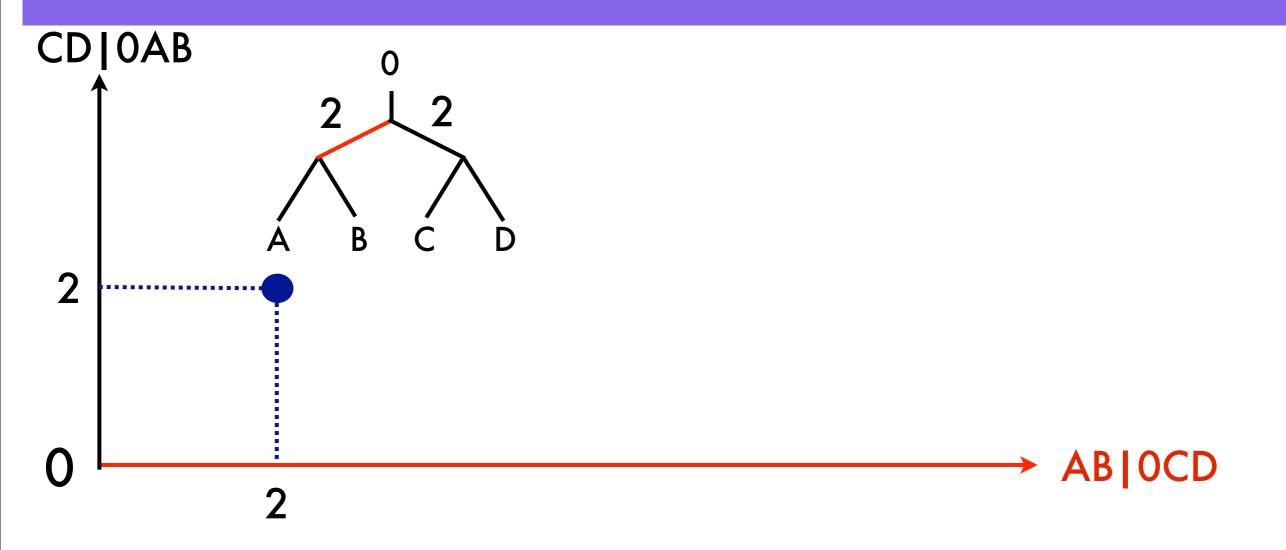
embedding in plane irrelevant

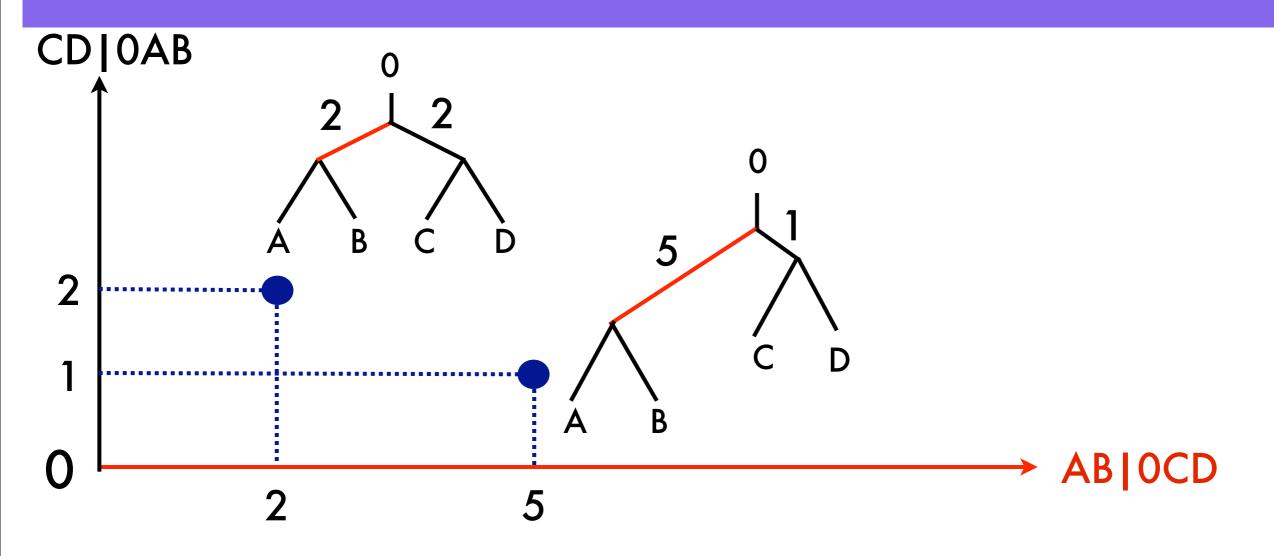


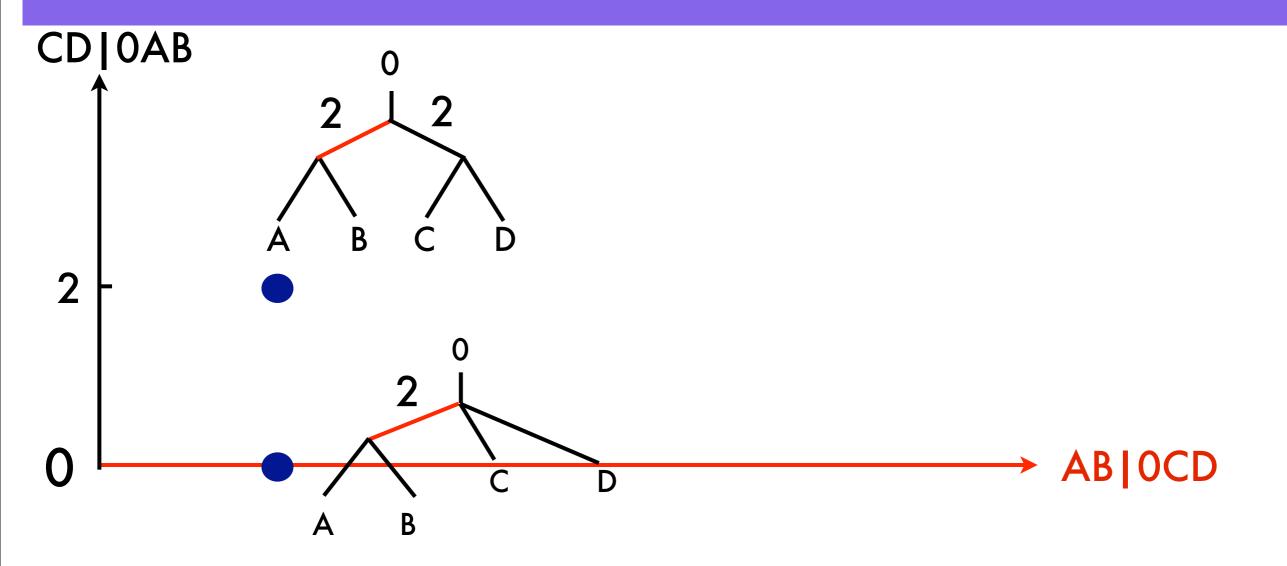
#### The trees

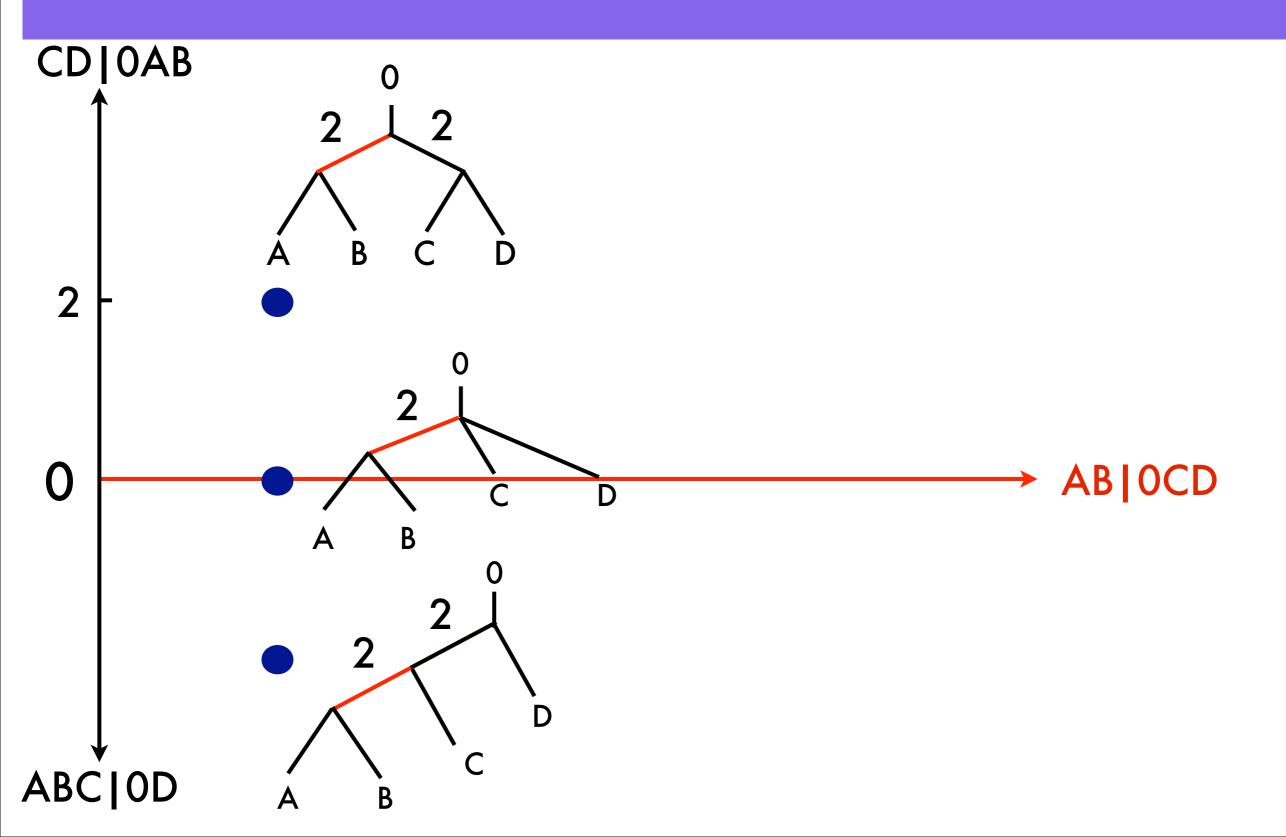
embedding in plane irrelevant

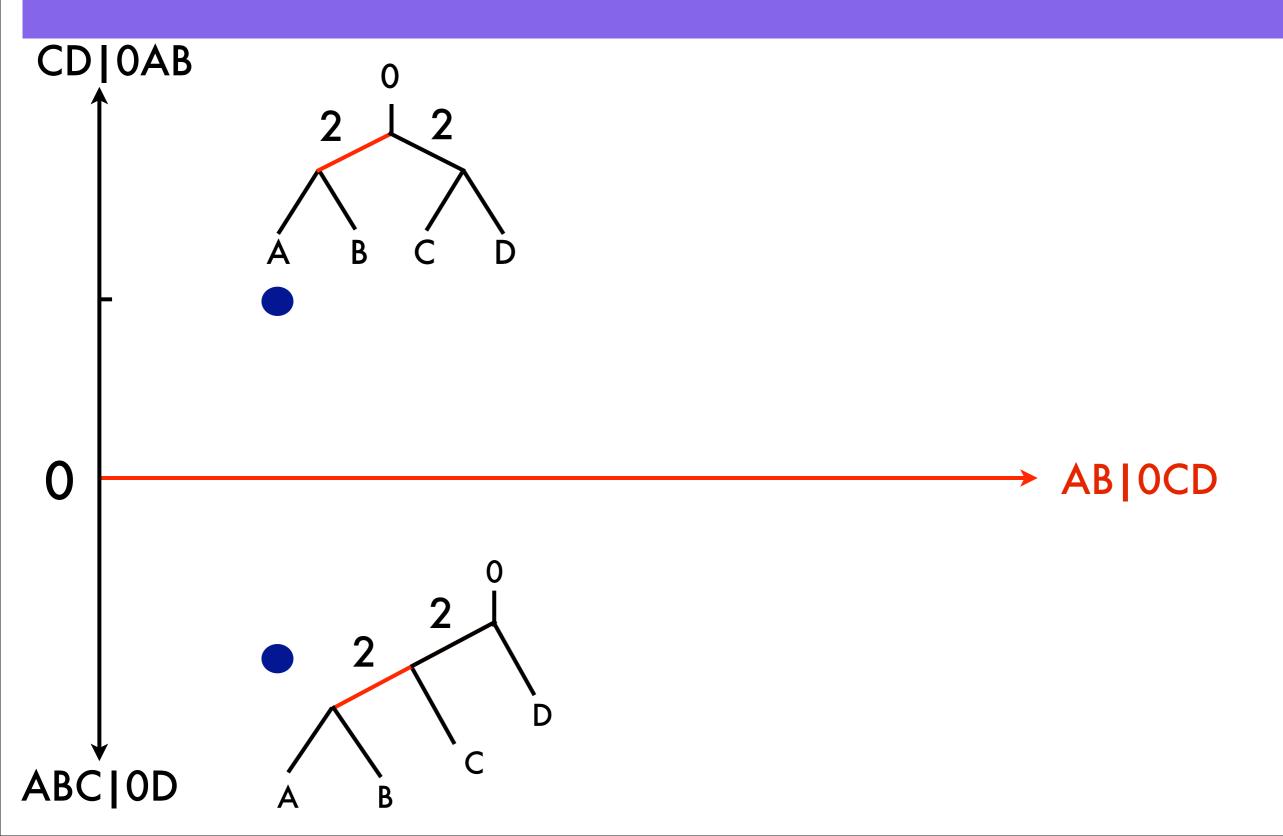


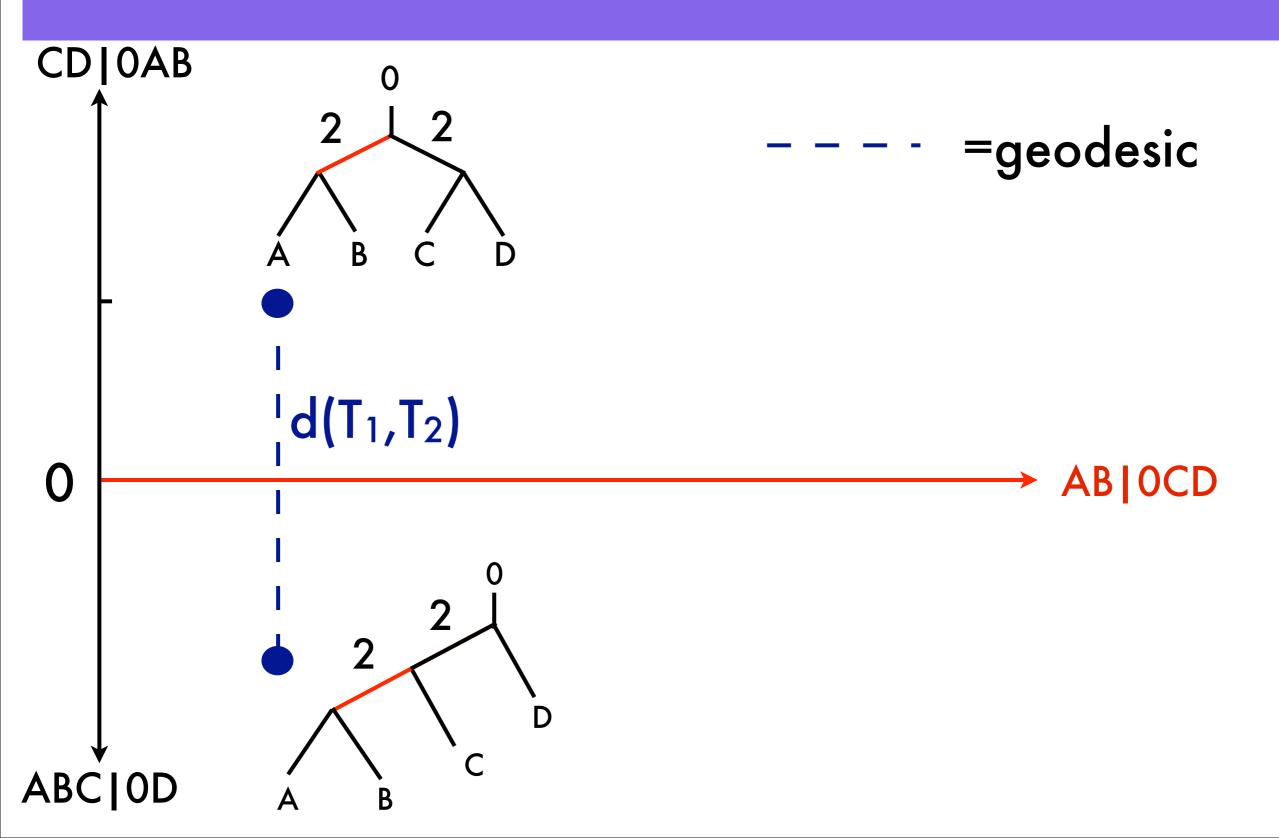


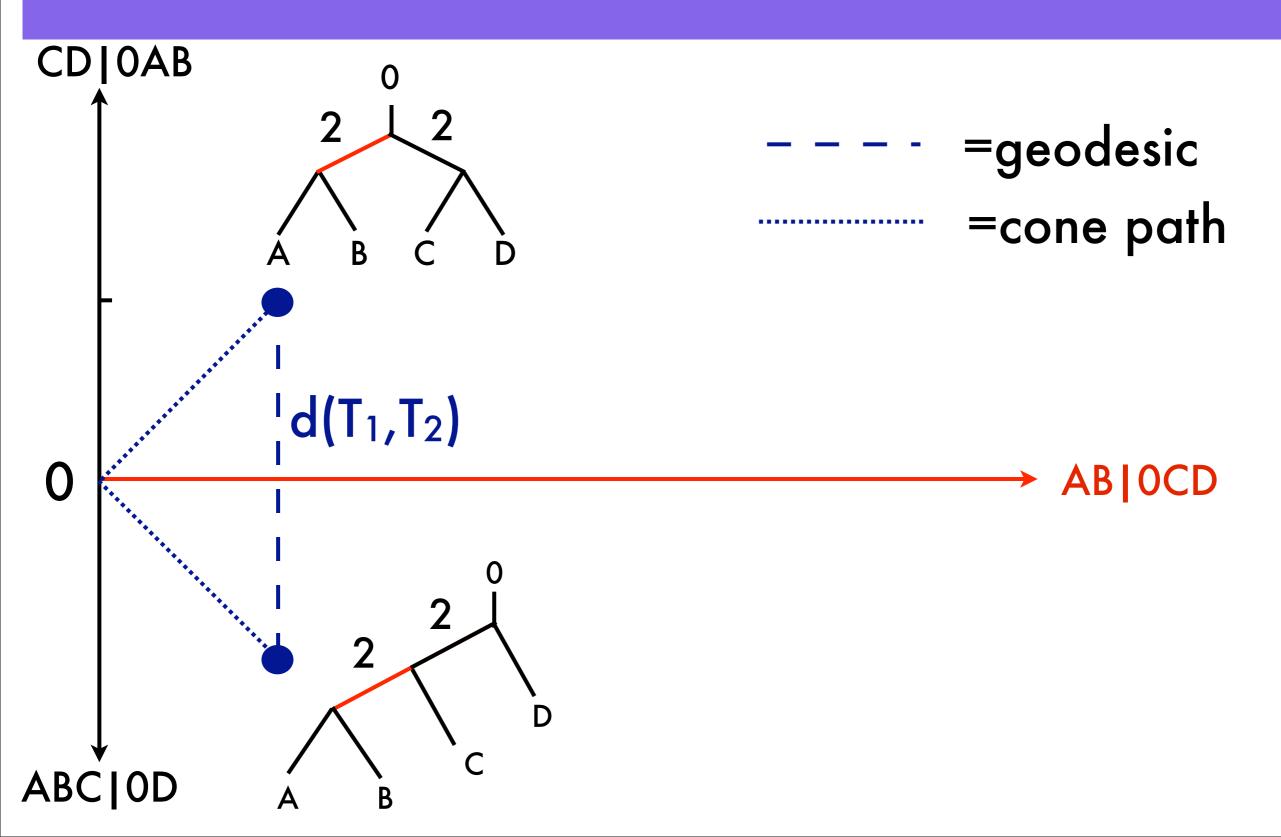


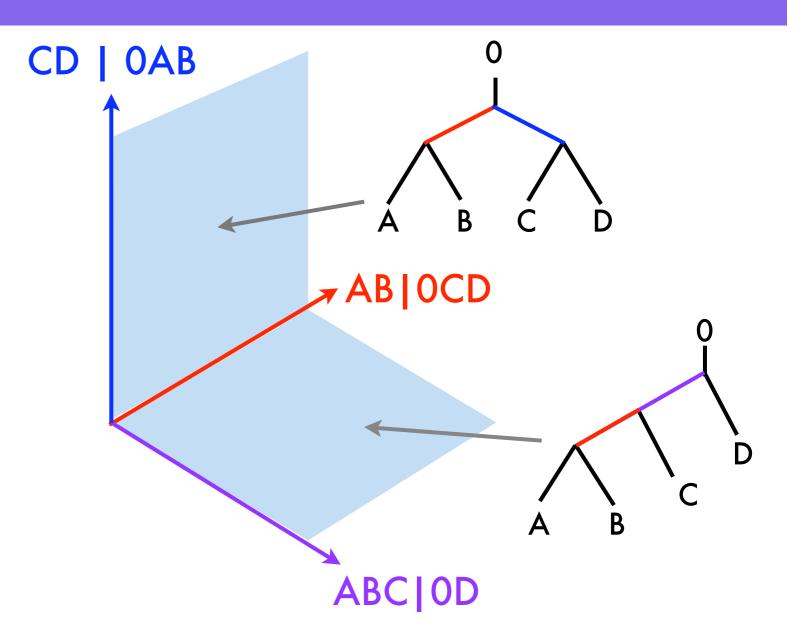


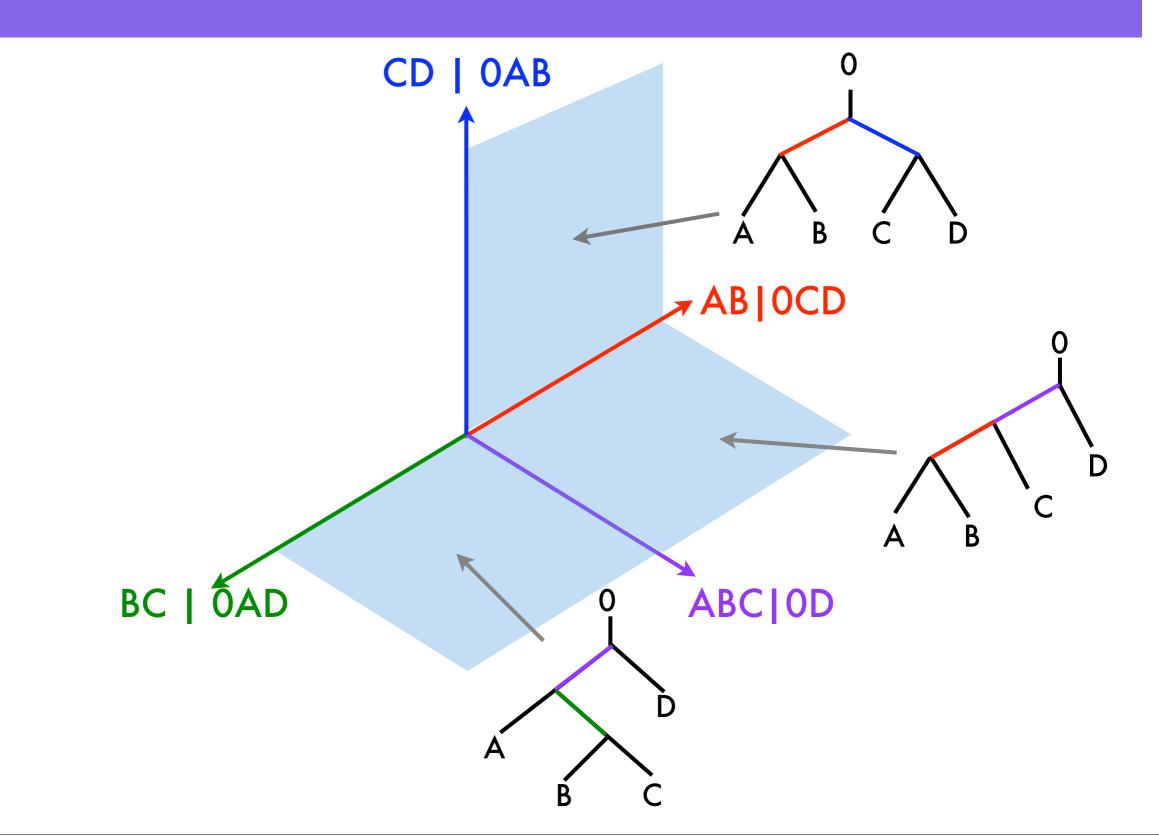




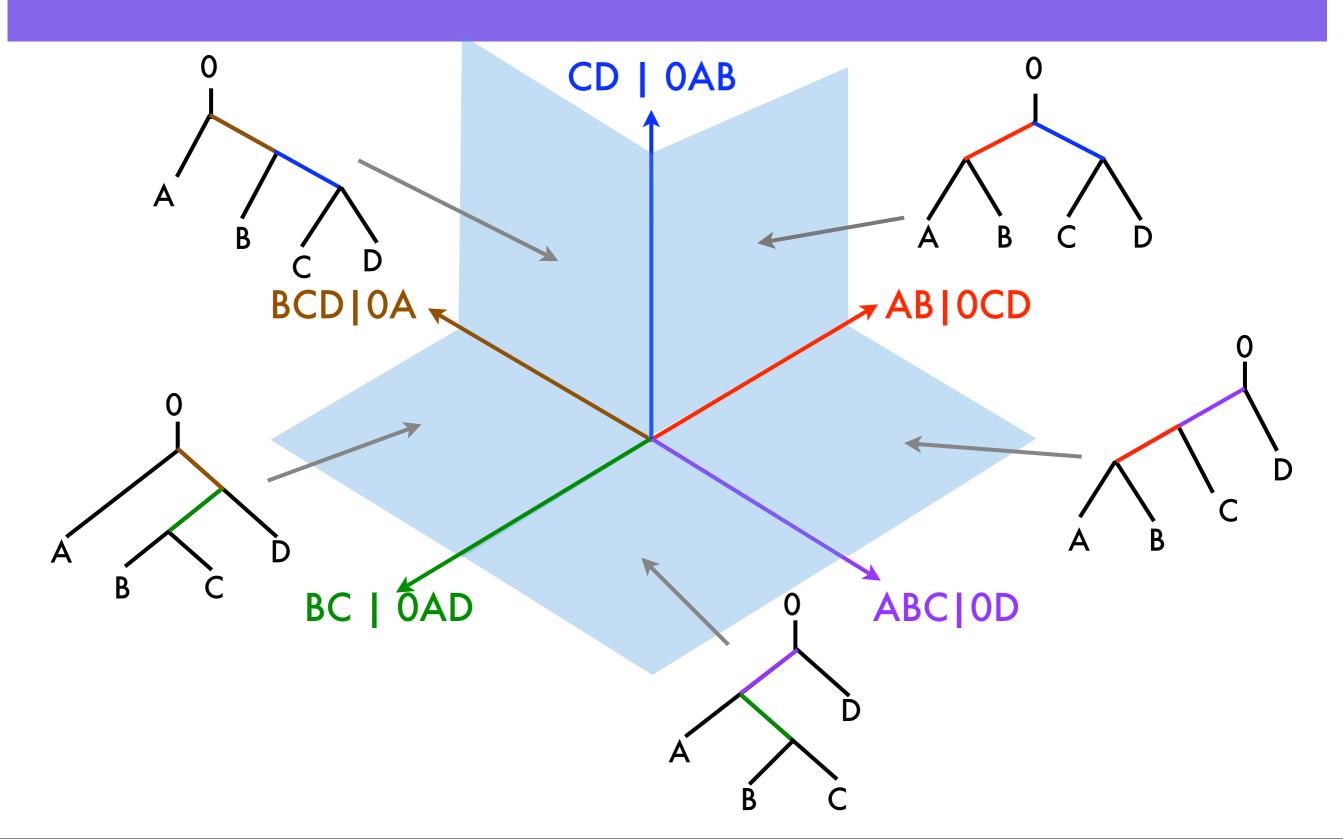


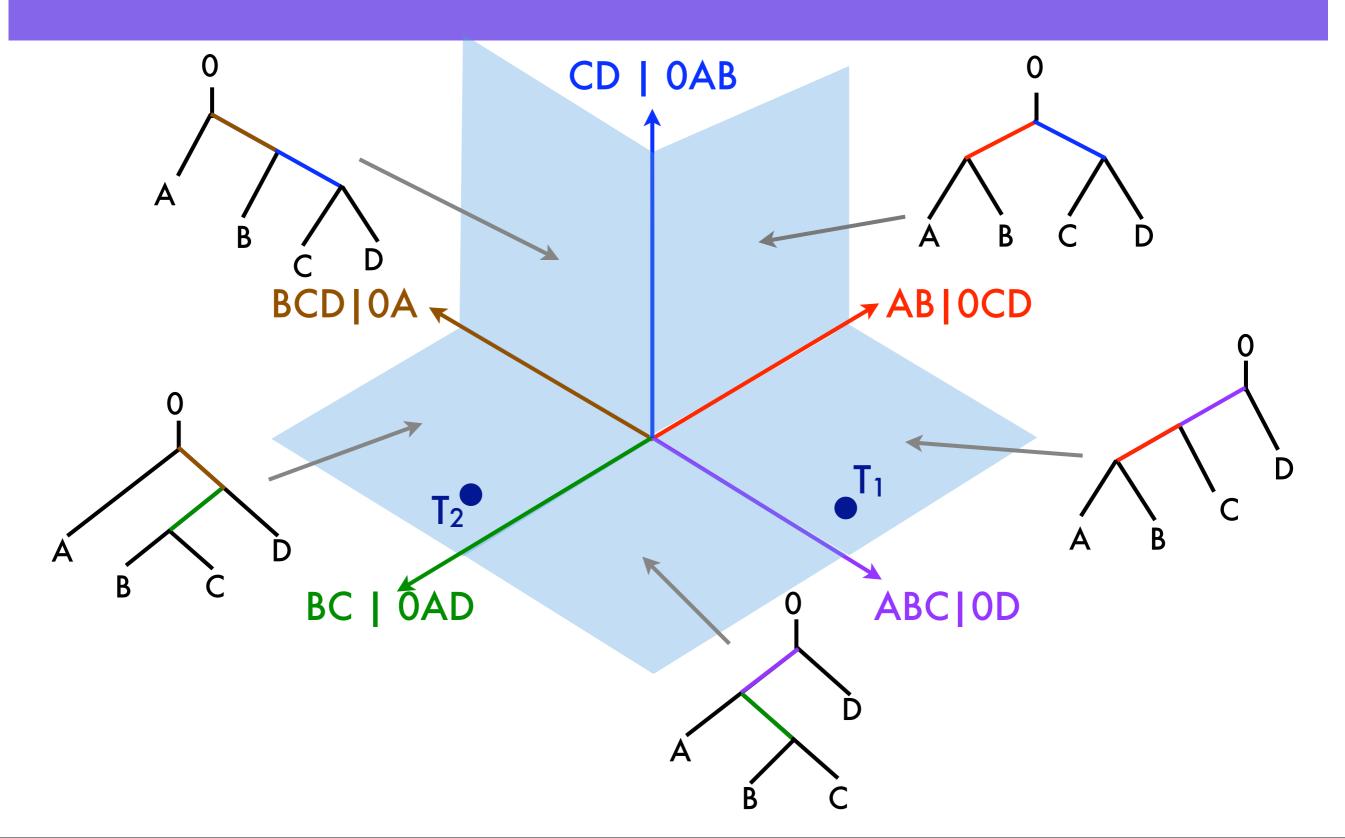


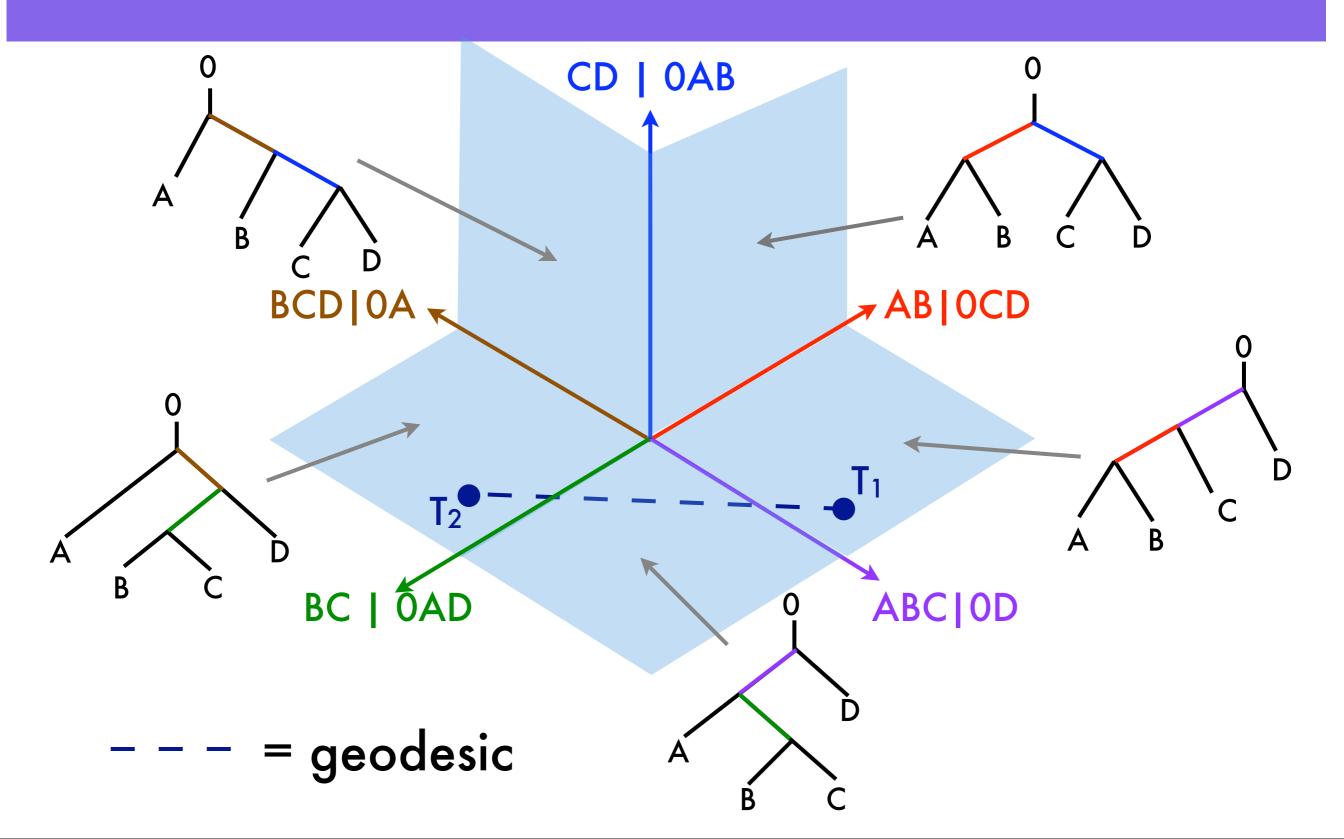


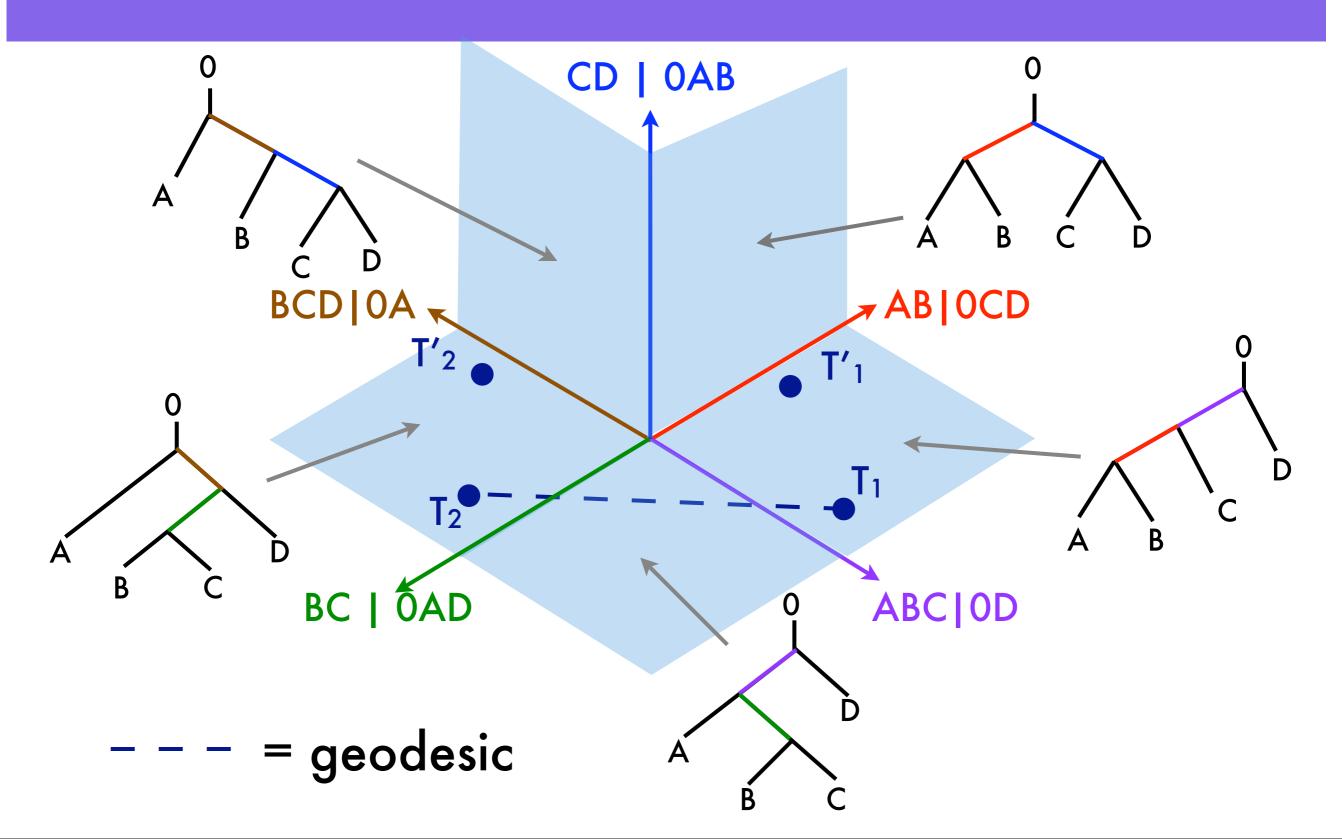


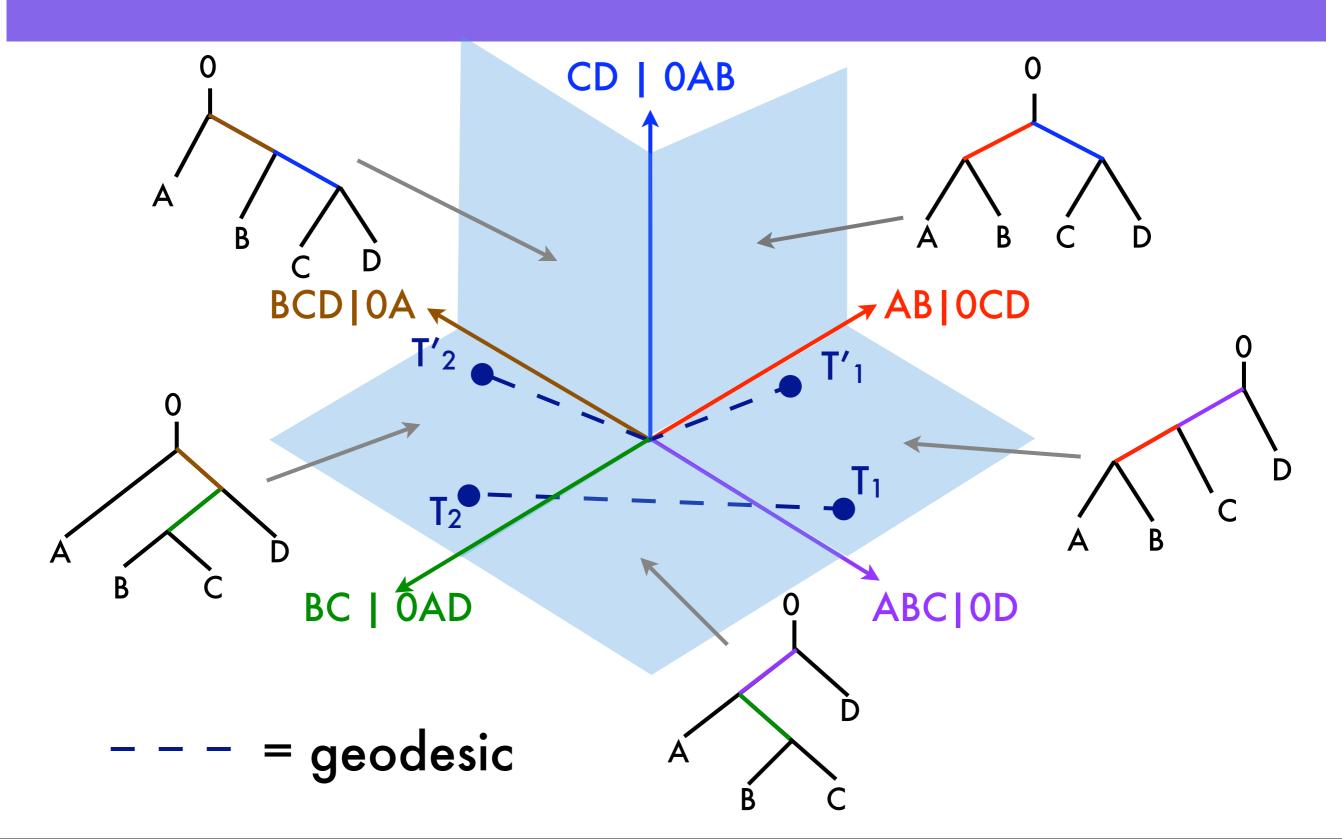
#### Structure of $\mathbb{T}_4$ 0 CD | OAB Ď В AB|OCD BCD | 0A D Ċ B Α Ď Α Ċ В BC | ÔAD ABC|0D 0 Ď Α











# $\mathbb{T}_n$ is CAT(0)

- CAT(0) space (non-positively curved)
  - ⇒ unique geodesic (shortest path

#### between two points)

- ⇒ well-defined mid-point tree
- geodesic distance = length of geodesic
   between two trees T<sub>1</sub> and T<sub>2</sub>, in
  - computable in polynomial time O(n<sup>4</sup>)
     (Owen and Provan, 2010)

## Average or Mean Trees

- mean tree
  - = center of mass of given set of trees
  - = tree T' minimizing sum of square geodesic distances from T' to each tree in a given set  ${\cal T}$

$$\underset{\mathsf{T}'}{\operatorname{\mathsf{mean tree}}} = \underset{\mathsf{T}'}{\operatorname{argmin}} \underset{T \in \mathcal{T}}{\sum} d(T,T')^2$$

- $m_0 = T_1$
- i<sup>th</sup> iteration:
  - randomly choose tree T<sub>i</sub> from given set

• 
$$m_i = \frac{1}{i+1}$$
 (geodesic from  $m_{i-1}$  to  $T_i$ )

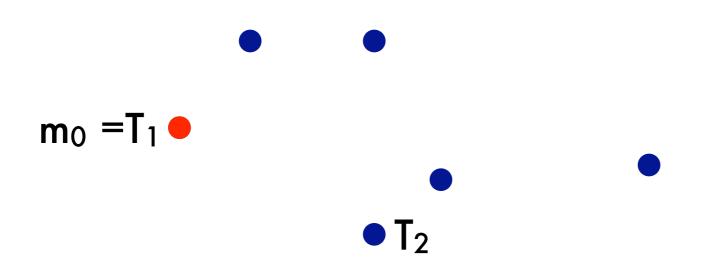
# Theorem (Sturm, 2003): the following algorithm converges to the mean tree:

•  $m_0 = T_1$ 

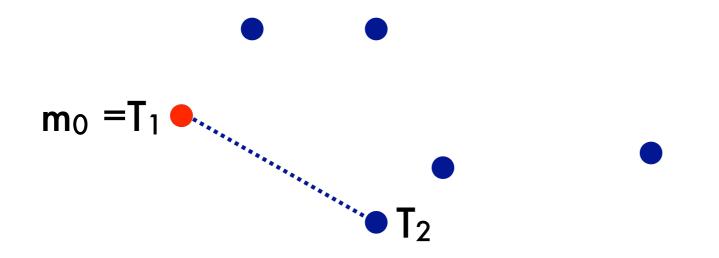
 $m_0 = T_1 \bullet$ 

- i<sup>th</sup> iteration:
  - randomly choose tree T<sub>i</sub> from given set

- $m_0 = T_1$
- i<sup>th</sup> iteration:
  - randomly choose tree T<sub>i</sub> from given set

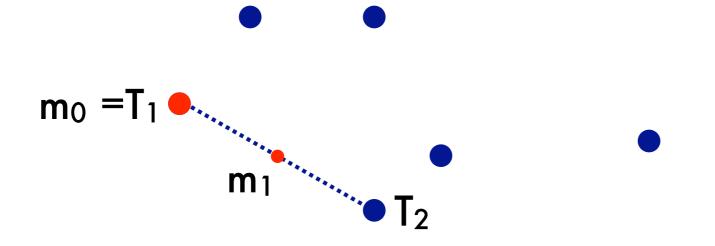


- $m_0 = T_1$
- i<sup>th</sup> iteration:
  - randomly choose tree T<sub>i</sub> from given set

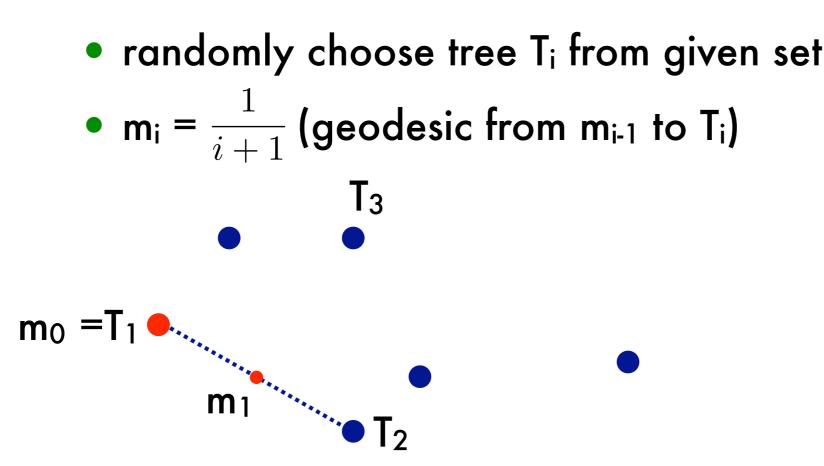


- $m_0 = T_1$
- i<sup>th</sup> iteration:
  - randomly choose tree T<sub>i</sub> from given set

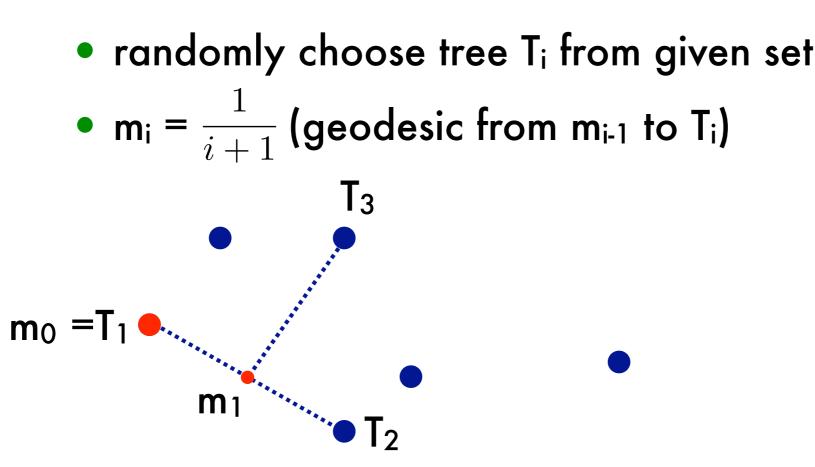
• 
$$m_i = \frac{1}{i+1}$$
 (geodesic from  $m_{i-1}$  to  $T_i$ )



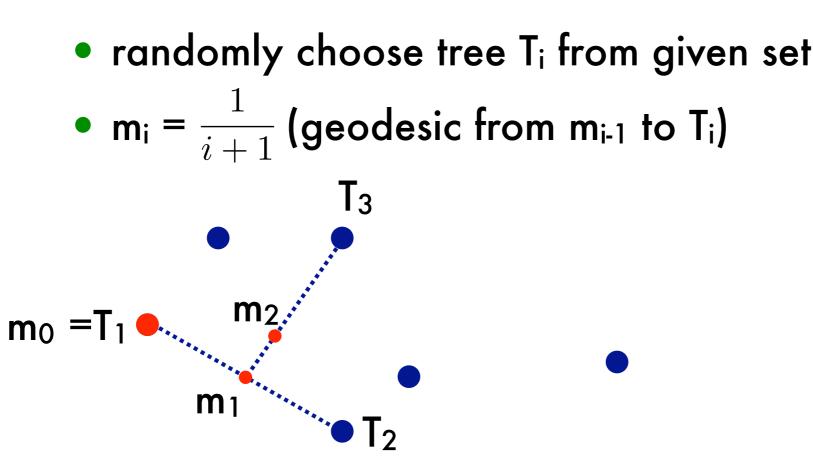
- $m_0 = T_1$
- i<sup>th</sup> iteration:



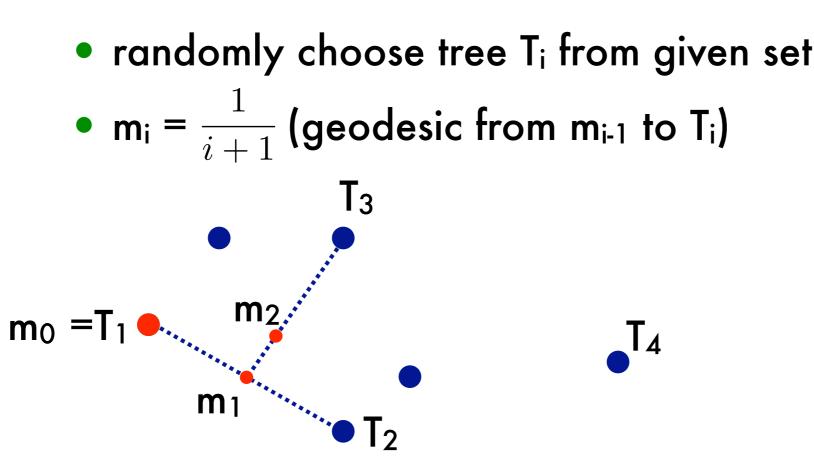
- $m_0 = T_1$
- i<sup>th</sup> iteration:



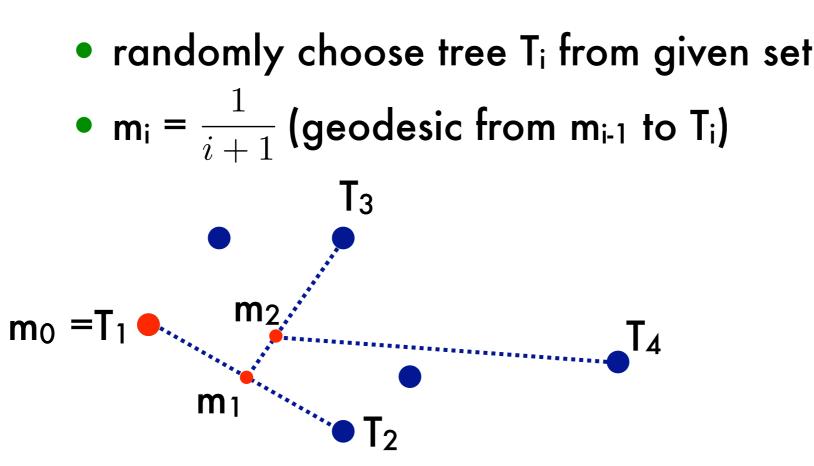
- $m_0 = T_1$
- i<sup>th</sup> iteration:



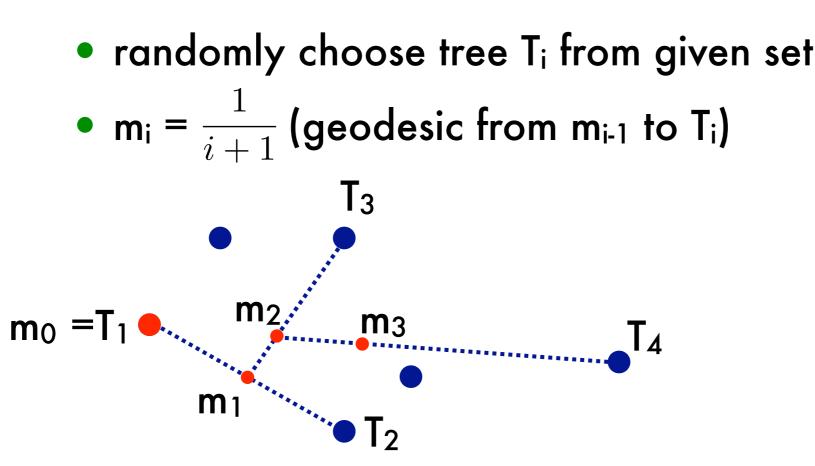
- $m_0 = T_1$
- i<sup>th</sup> iteration:

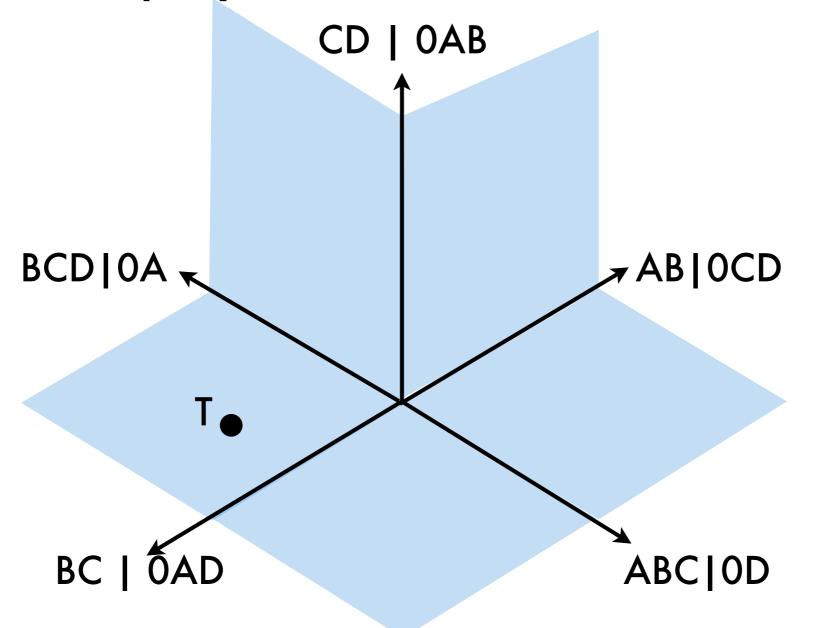


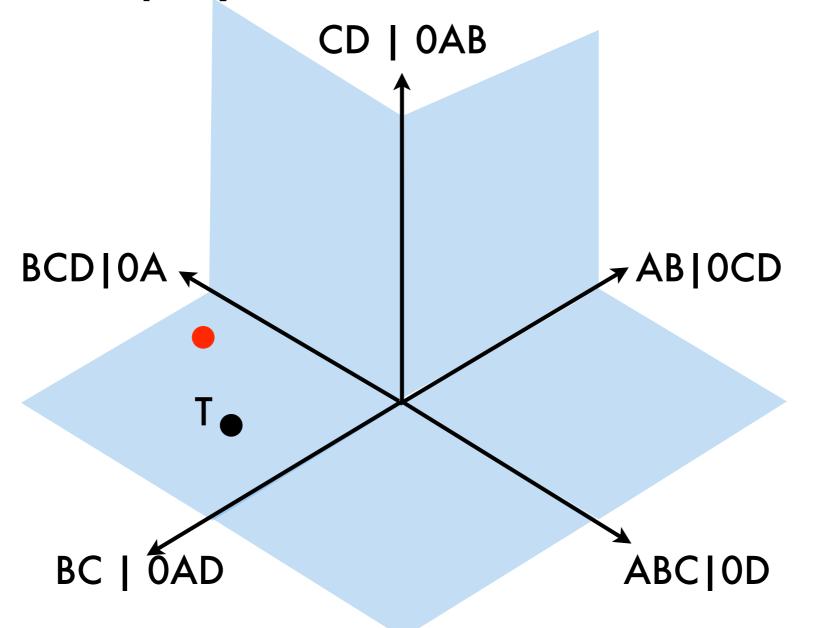
- $m_0 = T_1$
- i<sup>th</sup> iteration:

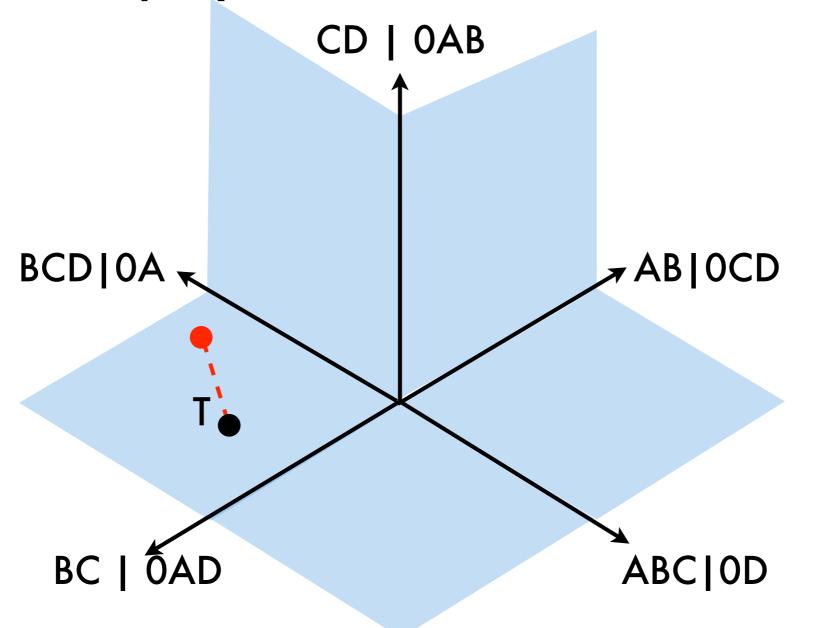


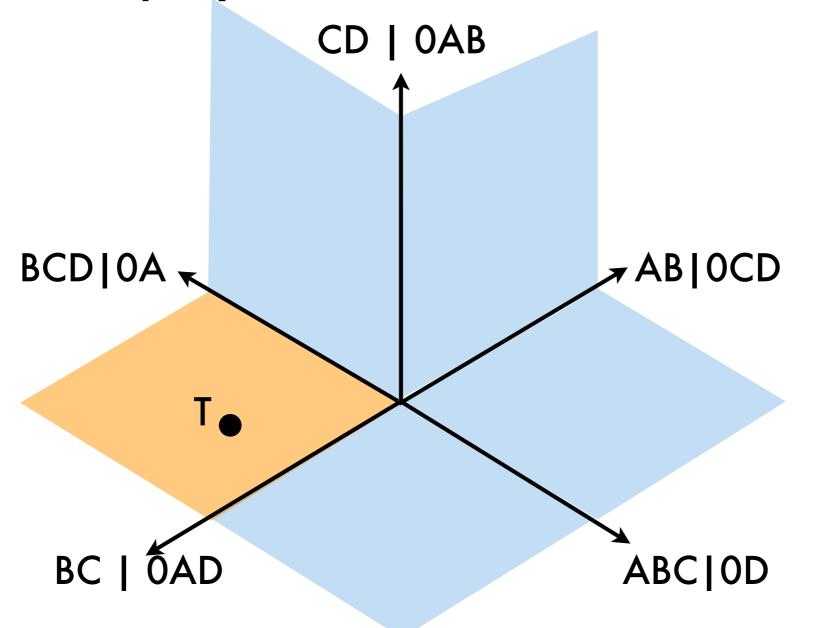
- $m_0 = T_1$
- i<sup>th</sup> iteration:

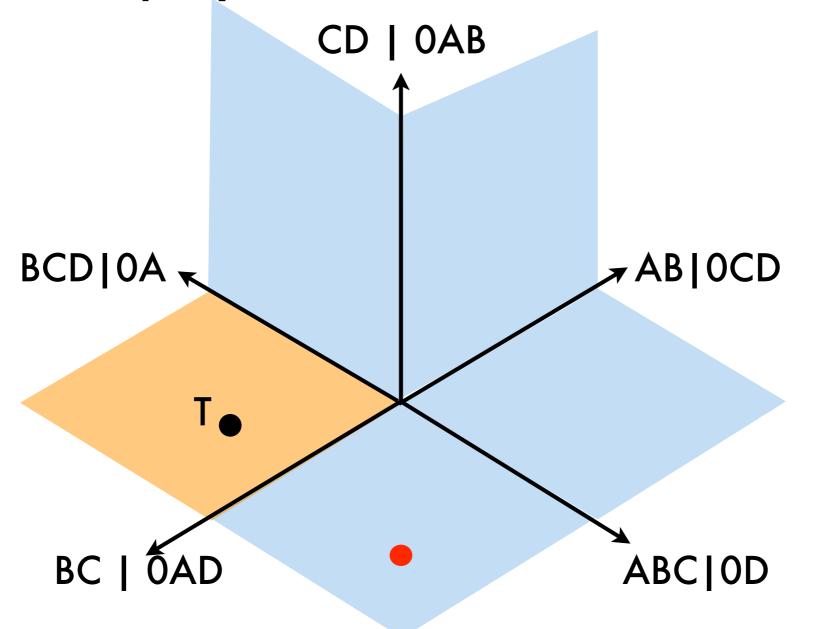


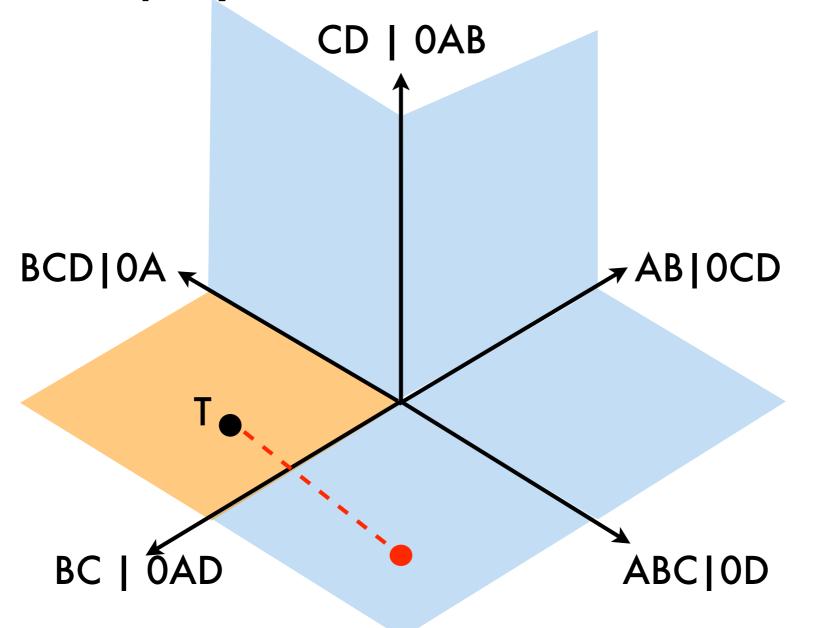


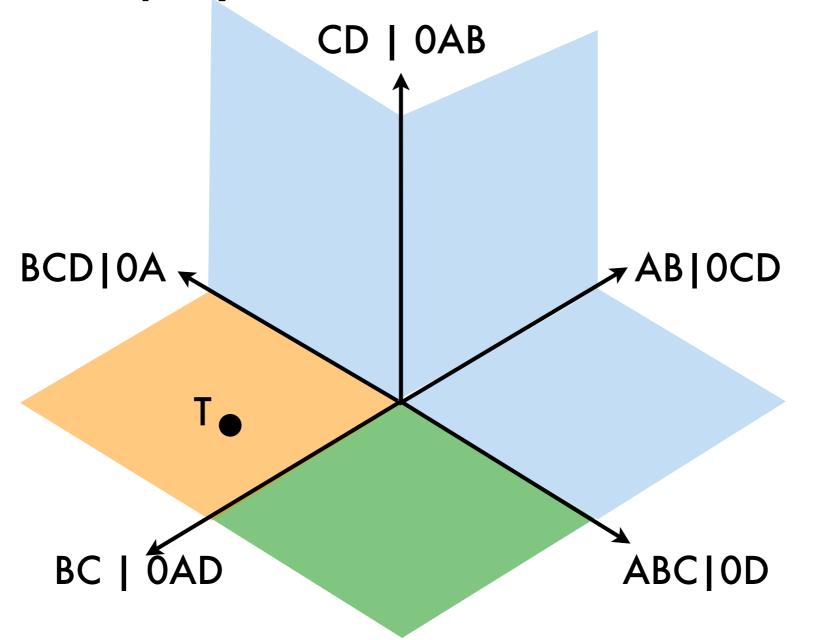


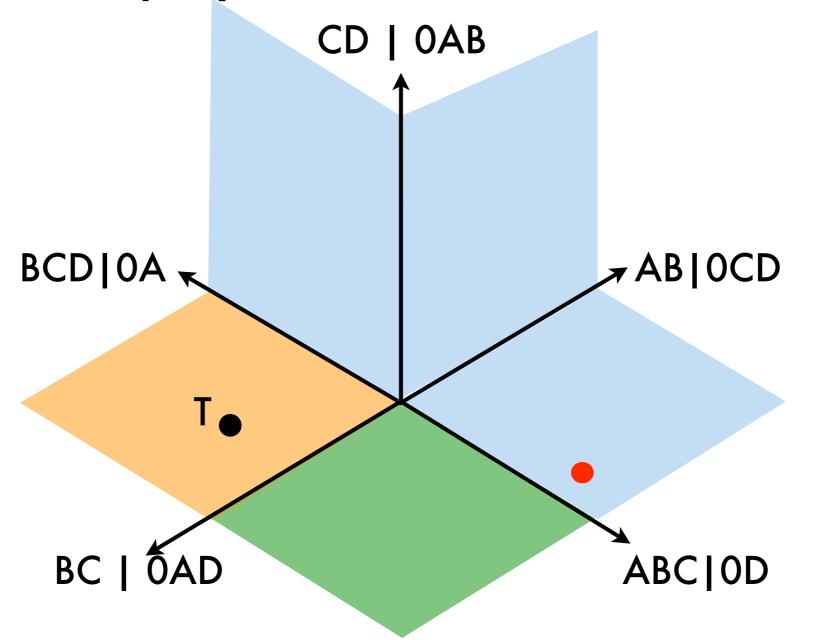


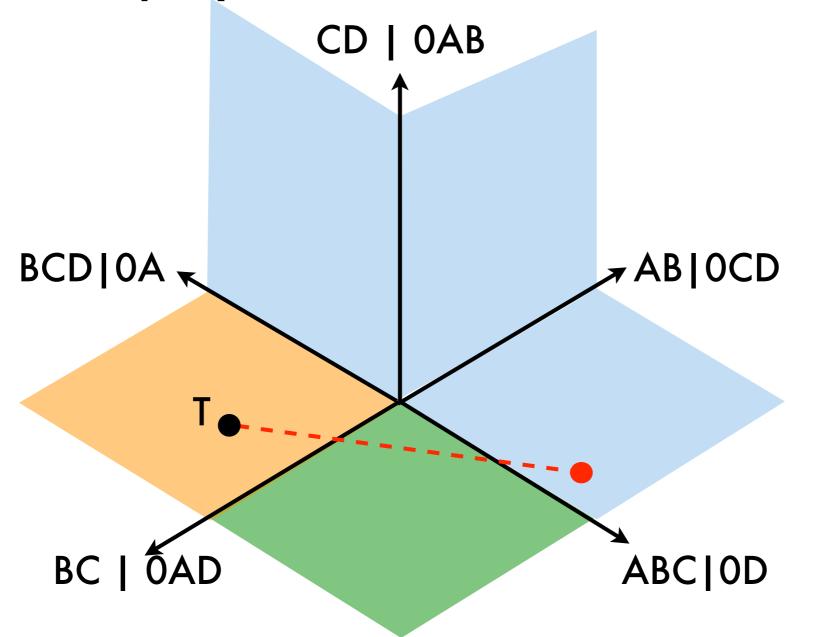


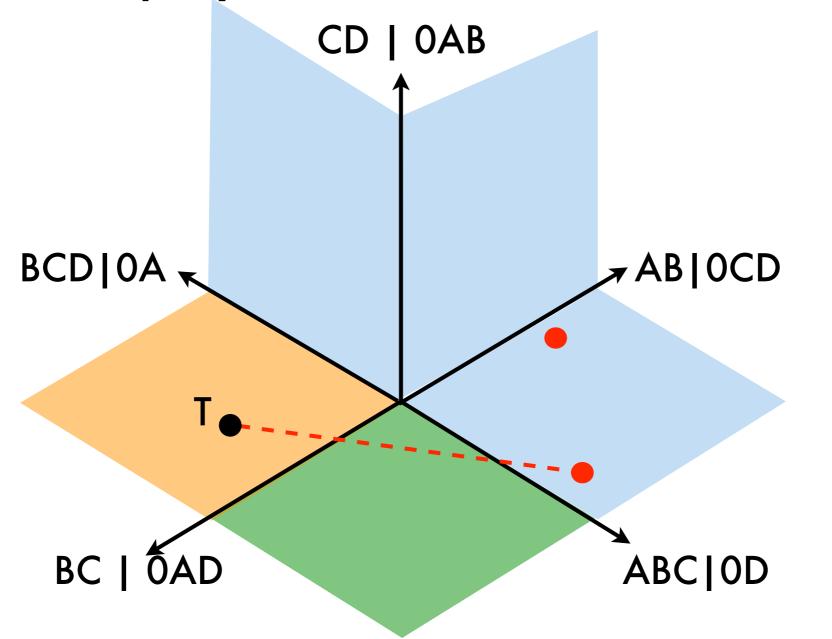


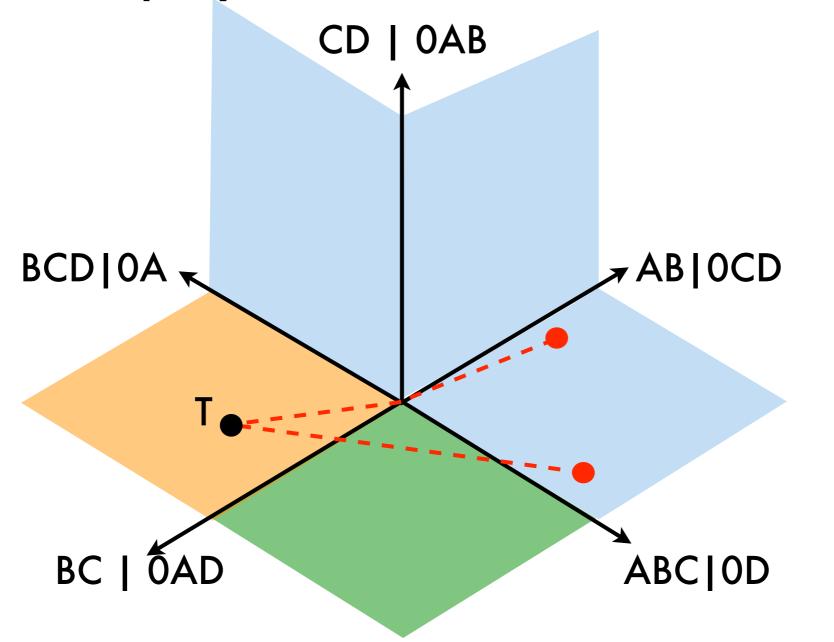


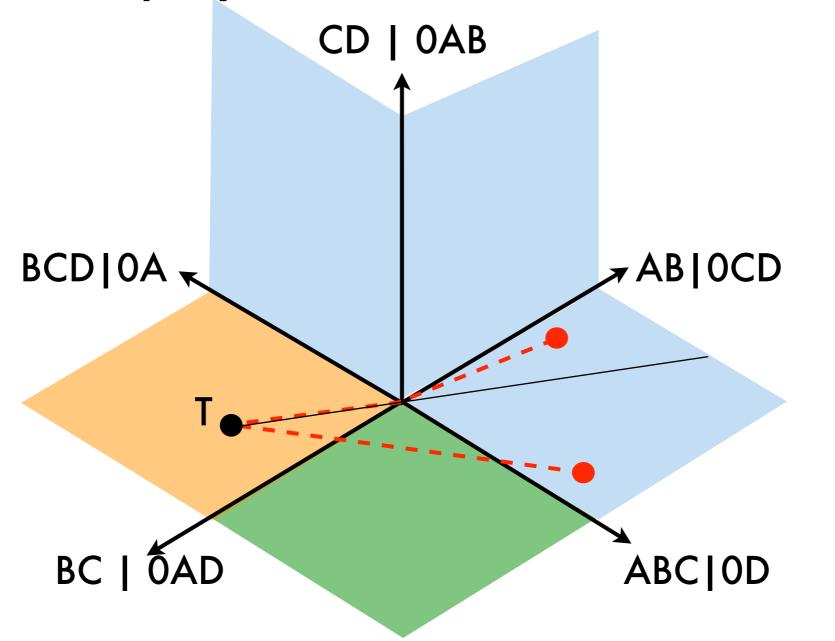


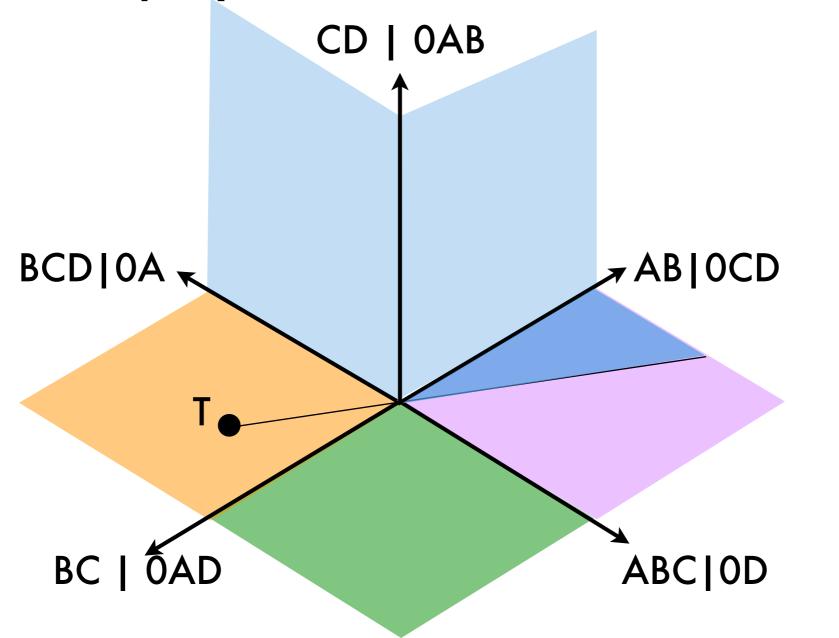












- combinatorial type of the geodesic to a fixed tree T induces a polyhedral subdivision on tree space
- use non-linear optimization to improve Sturm's algorithm:
  - once in correct polyhedral subdivision, gradient descent method will give minimum

# Current and Future Work

- determine convergence of algorithm
- grouping similar trees using Principal Component Analysis
- using the geodesic distance and tree space to do statistics on trees

## Thank You

• A fast algorithm for computing geodesic distances in tree space (Owen and Provan, 2010)

http://arxiv.org/abs/0907.3942

