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Gene and Species Trees

species tree

gene tree

• want species trees, but DNA gives us 
gene trees

• average of gene trees = species tree ?



Comparing brains

MRI scans

blood vessel

tree representing 
arteries in a brain

•how do we compare trees to determine 
changes in brain due to aging or disease?

•moving average

With Steve Marron, Ipek Oguz , Scott Provan, Martin Styner (all UNC)

Figures from Steve Marron



Goal
•goal:  

•compute a meaningful average of a set 
of metric trees

•metric tree parameters:

• tree topology

•edge lengths

•so not a standard statistical problem! 



Tree Space Framework

= tree complex

+ metric (geodesic distance)

continuous, polyhedral space of phylogenetic trees

• Shellability of complexes of trees, Trappmann and 
Ziegler, 1998.

• The tree representation of σn+1, Robinson and 
Whitehouse, 1996.

• computable in polynomial time (Owen and Provan, 2009)

• Geometry of the space of phylogenetic trees, Billera, 
Holmes, and Vogtmann, 2001.



•trees in      have:

•n leaves

•interior edges with lengths ≥0

Tree SpacexxTn
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Splits
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0 •each interior edge induces a split
•a split is a partition of the set of 
leaves plus the root 0:

e3 = { {B,C}, {0,A,E,D} }

or  e3 = BC | 0AED



Split Compatibility
•ex = X|X’ is compatible with ey = Y|Y’ if 

there exists a tree containing both splits

ex. e3 = BC | 0AED is compatible    
with e2 = BCD | 0AE                    
but not with f = AB | 0CDE
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    is CAT(0)
•CAT(0) space (non-positively curved)

⇒ unique geodesic (shortest path 

between two points)

⇒ well-defined mid-point tree

•geodesic distance = length of geodesic 
between two trees T1 and T2, in      

•computable in polynomial time O(n4)  
(Owen and Provan, 2010)

Tn



Average or Mean Trees
• mean tree

= center of mass of given set of trees

= tree T’ minimizing sum of square geodesic 
distances from T’ to each tree in a given set T

∑

T∈T

d(T, T ′)2mean tree = argmin
T’



Theorem (Sturm, 2003):  the following 
algorithm converges to the mean tree:

• m0 = T1

• ith iteration:

• randomly choose tree Ti from given set

• mi =        (geodesic from mi-1 to Ti)
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Mean Trees
•combinatorial type of the geodesic to a fixed 

tree T induces a polyhedral subdivision on tree 
space

•use non-linear optimization to improve Sturm’s 
algorithm:

•once in correct polyhedral subdivision, 
gradient descent method will give minimum 



Current and Future Work
•determine convergence of algorithm

•grouping similar trees using Principal 
Component Analysis

•using the geodesic distance and tree 
space to do statistics on trees



Thank You

• A fast algorithm for computing geodesic distances 
in tree space (Owen and Provan, 2010)

http://arxiv.org/abs/0907.3942

http://arxiv.org/abs/0907.3942
http://arxiv.org/abs/0907.3942

