
Identifiability of
Phylogenetic Mixture Models

Elizabeth Allman, Sonja Petrović, John Rhodes, and
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Phylogenetic Models

Let T be a trivalent tree with n leaves. Leaves are labeled by
[n] := {1, 2, 3, . . . , n}.
Associated to each edge of tree e is a Markov (structured)
transition matrix Me.
Once we specify T , and the Me, get a probability distribution of
characters at the leaves of the tree.
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Think of phylogenetic model as a map

φT : Θ ⊆ R
k → ∆4n

Given by polynomials:
MT := imφT = φT (Θ), is the phylogenetic model.
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Phylogenetic Mixture Models

Suppose there are k classes of sites in the genome.
Each class j ∈ [k ] evolved according to tree Tj on n leaves.
Assuming that the classes are hidden, we observe a probability
distribution of the form:

φT1,...,Tk (π, {Me}) = π1 ·φT1({M1
e})+π2 ·φT2({M2

e})+· · ·+πk ·φTk ({Mk
e })

where πj is the relative proportion of sites of class j .

Definition
Let T1, . . . , Tk be trees with n leaves. The phylogenetic mixture
model
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∗· · ·∗MTk
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Why Mixture Models?

Differing gene tree topologies

Could explain evolution with recombination
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Group-based Models

For remainder we focus on group-based models. Phylogenetic
models with structured transition matrices.
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Transition structure is governed by a finite Abelian group G,
such that

Me(g, h) = fe(g − h).

Theorem (Evans-Speed 1993, Hendy-Penny 1993)

Group-based models are toric varieties in Fourier coordinates.
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The Identifiability Problem

Definition
The tree parameters T1, . . . , Tk in a k-class phylogenetic
mixture model are identifiable if for all

p ∈ MT1
∗ · · · ∗MTk

there does not exist another set of k trees T ′

1, . . . , T ′

k such that

p ∈ MT ′

1
∗ · · · ∗MT ′

k
.
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Generic Identifiability

Definition
The tree parameters in a k-class phylogenetic mixture model
are generically identifiable if for all nonequal multisets
T1, . . . , Tk , and T ′

1, . . . , T ′

k ,

dim(MT1
∗ · · · ∗MTk

∩MT ′

1
∗ · · · ∗MT ′

k
) < dim(MT1

∗ · · · ∗MTk
).
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Past Work on Identifiability of Tree Mixtures

Identifiability Results:
Allman and Rhodes (2006) T1 = . . . = Tk , k < n.
Stefankovic and Vigoda (2007) T1 = . . . = Tk , JC, K2P
Matsen, Mossel, and Steel (2008)

Non-Identifiability Results:
Matsen and Steel (2007)
Stefankovic and Vigoda (2007)
Mossel and Vigoda (2005)
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Algebraic Methods for Proving Identifiability

Proposition

Let M0 and M1 be two algebraic models. If there exist
polynomials f0 and f1 such that

fi(p) = 0 for all p ∈ Mi , and fi(p) 6= 0 for some p ∈ M1−i , then

dim(M0 ∩M1) < min(dimM0, dimM1).

Proposition

Let M0 and M1 be two algebraic models. If there is a
polynomial f0 such that

f0(p) = 0 for all p ∈ M0, and f0(p) 6= 0 for some p ∈ M1, and

dimM1 ≤ dimM0 then

dim(M0 ∩M1) < min(dimM0, dimM1).
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Our Identifiability Results

Theorem

The tree parameters of the phylogenetic mixture model
MT1

∗MT2
are generically identifiable under the Jukes-Cantor

and Kimura 2-parameter models if T1, T2 are trivalent with
n ≥ 4 leaves.

Strategy: Prove theorem for quartets n = 4, 5, 6.

Use Matsen-Mossel-Steel “Six to Infinity" Theorem.

Toric nature of group-based models lets us used tropical
techniques to prove that models have the expected
dimension.

JC and K2P models allow us to construct linear invariants
to prove identifiability.
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A (Mathematical) Surprise
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Theorem

For the Jukes-Cantor model

MT2
⊆ MT1

∗MT3
.

Can the closure be dropped; i.e. does it happen for biologically
meaningful parameter values?
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Future Directions

Deal with the other group-based models (CFN, K3P)

Beyond group-based models, GTR, GMM

Beyond 2-tree mixtures to k-tree mixtures
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