Asymptotic Approximation of Marginal Likelihood Integrals

Shaowei Lin

shaowei@math.berkeley.edu

28 Mar 2010, University of Kentucky, Lexington

A Statistical Example

132 Schizophrenic Patients

Evans-Gilula-Guttman(1989) studied schizophrenic patients for connections between recovery time (in years Y) and frequency of visits by relatives.

	$2 \leq Y < 10$	$10 \leq Y < 20$	$20 \leq Y$	Totals
Regularly	43	16	3	62
Rarely	6	11	10	27
Never	9	18	16	43
Totals	58	45	29	132

Proposed two statistical models to explain the data.

132 Schizophrenic Patients

Model 1: Independence Model

	$2 \leq Y < 10$	$10 \leq Y < 20$	$20 \leq Y$
Regularly	a_1b_1	a_1b_2	a_1b_3
Rarely	a_2b_1	a_2b_2	a_2b_3
Never	a_3b_1	$a_{3}b_{2}$	a_3b_3

132 Schizophrenic Patients

Model 1: Independence Model

	$2 \leq Y < 10$	$10 \leq Y < 20$	$20 \leq Y$
Regularly	a_1b_1	a_1b_2	a_1b_3
Rarely	a_2b_1	a_2b_2	a_2b_3
Never	a_3b_1	$a_{3}b_{2}$	a_3b_3

Model 2: Hidden Variable Model

Marginal Likelihood Integrals

In Bayesian statistics, models are selected by comparing *marginal likelihood integrals*.

$$Z = \int_{\Omega} \prod_{i,j} p_{ij}(\omega)^{U_{ij}} \varphi(\omega) d\omega$$

 U_{ij} the data, Ω parameter space $p_{ij}(\omega)$ functions parametrizing the model $\varphi(\omega)$ prior belief about parameter space

Marginal Likelihood Integrals

In Bayesian statistics, models are selected by comparing *marginal likelihood integrals*.

$$Z = \int_{\Omega} \prod_{i,j} p_{ij}(\omega)^{U_{ij}} \varphi(\omega) d\omega$$

 U_{ij} the data, Ω parameter space $p_{ij}(\omega)$ functions parametrizing the model $\varphi(\omega)$ prior belief about parameter space

e.g. for the first model,

$$Z_1 = \int_{\Delta_2} \int_{\Delta_2} a_1^{62} a_2^{27} a_3^{43} b_1^{58} b_2^{45} b_3^{29} \, da \, db$$

$$a = (a_1, a_2, a_3), b = (b_1, b_2, b_3)$$

$$\Delta_2 = \{ (x_1, x_2, x_3) \in \mathbb{R}^3 : x_i \ge 0, \sum_i x_i = 1 \}$$

Asymptotic Approximation

In general, we want to compute

$$Z(n) = \int_{\Omega} \prod_{i=1}^{k} p_i(\omega)^{nq_i} |\varphi(\omega)| d\omega$$

- n sample size
- Ω compact and semianalytic

i.e. $\Omega = \{ \omega \in \mathbb{R}^d : g_1 \ge 0, \dots, g_l \ge 0 \}$, g_i real analytic on \mathbb{R}^d φ nearly analytic

i.e. $\varphi = \varphi_s \varphi_a$, φ_s positive and smooth, φ_a real analytic on Ω p_i positive real analytic functions on Ω summing to 1 q true distribution with $q = p(\omega^*)$ for some $\omega^* \in \Omega$

Asymptotic Approximation

In general, we want to compute

$$Z(n) = \int_{\Omega} \prod_{i=1}^{k} p_i(\omega)^{nq_i} |\varphi(\omega)| d\omega$$

• L.-Sturmfels-Xu(2008) gave efficient algorithms for computing Z(n) exactly for small samples n.

Asymptotic Approximation

In general, we want to compute

$$Z(n) = \int_{\Omega} \prod_{i=1}^{k} p_i(\omega)^{nq_i} |\varphi(\omega)| d\omega$$

- L.-Sturmfels-Xu(2008) gave efficient algorithms for computing Z(n) exactly for small samples n.
- Asymptotically, as $n \to \infty$,

$$Z(n) \approx (\prod_{i=1}^{k} q_i^{q_i})^n \cdot Cn^{-\lambda} (\log n)^{\theta-1}$$

In this talk, we want to compute (λ, θ) . In machine learning, λ is called the *learning coefficient* of the statistical model and θ its *multiplicity*. Statistical Learning Theory and Singularity Theory

Statistical Learning Theory

Define
$$Q(\omega) = \|p(\omega) - q\|^2 = \sum_{i=1}^k (p_i(\omega) - q_i)^2$$
.

Theorem (Watanabe)

If (λ,θ) is the learning coefficient and its multiplicity, then asymptotically

$$\int_{\Omega} e^{-nQ(\omega)} |\varphi(\omega)| d\omega \approx C n^{-\lambda} (\log n)^{\theta-1}$$

for some constant C.

Singularity Theory

Theorem (Arnold-Gusein Zade-Varchenko)

Let f be a real analytic function on Ω with $f(\omega^*) = 0$ for some $\omega^* \in \Omega$. If we have asymptotics

$$Z(n) = \int_{\Omega} e^{-n|f(\omega)|} |\varphi(\omega)| d\omega \approx C n^{-\lambda} (\log n)^{\theta - 1},$$

then λ is the smallest pole of the zeta function

$$\zeta(z) = \int_{\Omega} |f(\omega)|^{-z} |\varphi(\omega)| d\omega, \quad z \in \mathbb{C}$$

and θ is the multiplicity of this pole.

Example: Monomial Functions

• Let
$$f = \omega_1^{\kappa_1} \cdots \omega_d^{\kappa_d}$$
, $\varphi = \omega_1^{\tau_1} \cdots \omega_d^{\tau_d}$ and $\Omega = [0, \varepsilon]^d$.
$$\int_{[0,\varepsilon]^d} e^{-n\omega^{\kappa}} \omega^{\tau} d\omega = Cn^{-\lambda} (\log n)^{\theta-1}$$

Example: Monomial Functions

• Let
$$f = \omega_1^{\kappa_1} \cdots \omega_d^{\kappa_d}$$
, $\varphi = \omega_1^{\tau_1} \cdots \omega_d^{\tau_d}$ and $\Omega = [0, \varepsilon]^d$.
$$\int_{[0,\varepsilon]^d} e^{-n\omega^{\kappa}} \omega^{\tau} d\omega = Cn^{-\lambda} (\log n)^{\theta-1}$$

• To find (λ, θ) , we study the zeta function

$$\int_{\Omega} \omega^{-\kappa z + \tau} d\omega = \left[\frac{\omega_1^{-\kappa_1 z + \tau_1 + 1}}{-\kappa_1 z + \tau_1 + 1} \right]_0^{\varepsilon} \cdots \left[\frac{\omega_d^{-\kappa_d z + \tau_d + 1}}{-\kappa_d z + \tau_d + 1} \right]_0^{\varepsilon}$$

Example: Monomial Functions

• Let
$$f = \omega_1^{\kappa_1} \cdots \omega_d^{\kappa_d}$$
, $\varphi = \omega_1^{\tau_1} \cdots \omega_d^{\tau_d}$ and $\Omega = [0, \varepsilon]^d$.
$$\int_{[0,\varepsilon]^d} e^{-n\omega^{\kappa}} \omega^{\tau} d\omega = Cn^{-\lambda} (\log n)^{\theta-1}$$

• To find (λ, θ) , we study the zeta function

$$\int_{\Omega} \omega^{-\kappa z + \tau} d\omega = \left[\frac{\omega_1^{-\kappa_1 z + \tau_1 + 1}}{-\kappa_1 z + \tau_1 + 1} \right]_0^{\varepsilon} \cdots \left[\frac{\omega_d^{-\kappa_d z + \tau_d + 1}}{-\kappa_d z + \tau_d + 1} \right]_0^{\varepsilon}$$

• Thus,
$$\lambda = \min_{i} \left\{ \frac{\tau_i + 1}{\kappa_i} \right\}, \ \theta = \# \min_{i} \left\{ \frac{\tau_i + 1}{\kappa_i} \right\}$$

where $\# \min S$ is the number of times the minimum is attained in a set S.

Resolution of Singularities

Theorem (Hironaka)

Let f be a real analytic function at the origin with f(0) = 0.

Then, there exists a manifold M, a neighborhood W of the origin and a proper real analytic map $\rho: M \to W$ such that

- ρ is an isomorphism on $M \setminus (f \circ \rho)^{-1}(0)$

Resolution of Singularities

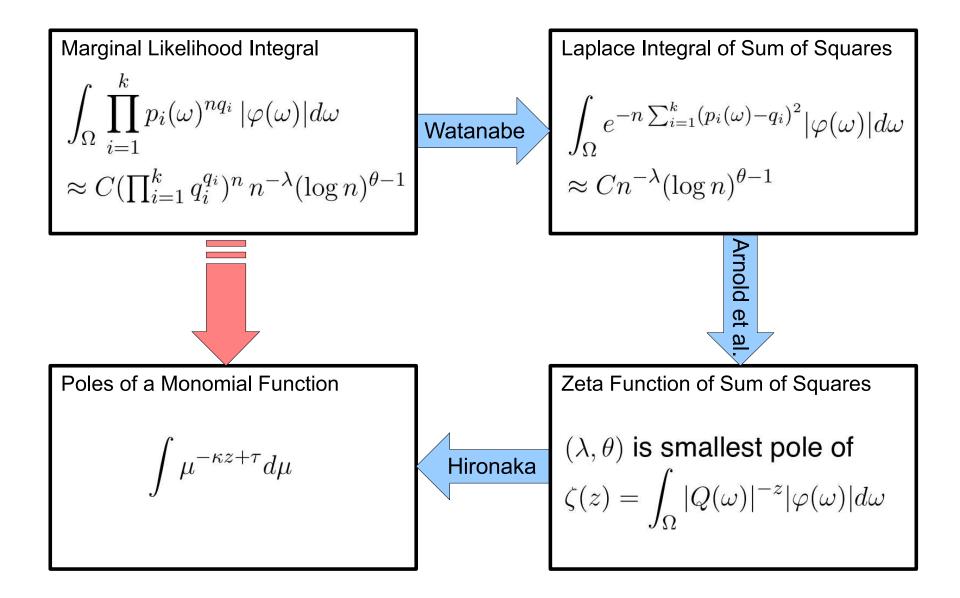
Theorem (Hironaka)

Let f be a real analytic function at the origin with f(0) = 0.

Then, there exists a manifold M, a neighborhood W of the origin and a proper real analytic map $\rho: M \to W$ such that

- ρ is an isomorphism on $M \setminus (f \circ \rho)^{-1}(0)$
- ho and |
 ho'| are monomial functions
 locally at each y ∈ $(f \circ \rho)^{-1}(0)$

Thus, we can find the poles of the zeta function of any f, provided we have a resolution of singularities for f. Finding resolutions is generally a hard problem.



• $\Omega \subset \mathbb{R}^d$ compact semianalytic subset \mathcal{A}_{Ω} ring of real analytic functions on Ω $I = \langle f_1, \dots, f_r \rangle \subset A_{\Omega}$, φ nearly analytic

- $\Omega \subset \mathbb{R}^d$ compact semianalytic subset \mathcal{A}_{Ω} ring of real analytic functions on Ω $I = \langle f_1, \dots, f_r \rangle \subset A_{\Omega}$, φ nearly analytic
- Consider the zeta function

$$\zeta(z) = \int_{\Omega} \left(f_1(\omega)^2 + \dots + f_r(\omega)^2 \right)^{-z/2} |\varphi(\omega)| d\omega$$

- $\Omega \subset \mathbb{R}^d$ compact semianalytic subset \mathcal{A}_{Ω} ring of real analytic functions on Ω $I = \langle f_1, \dots, f_r \rangle \subset A_{\Omega}$, φ nearly analytic
- Consider the zeta function

$$\zeta(z) = \int_{\Omega} \left(f_1(\omega)^2 + \dots + f_r(\omega)^2 \right)^{-z/2} |\varphi(\omega)| d\omega$$

• Define $\operatorname{RLCT}_{\Omega}(I; \varphi) = (\lambda, \theta)$ where λ is the smallest pole of $\zeta(z)$ and θ its multiplicity. If $\zeta(z)$ does not have any poles, set $(\lambda, \theta) = (\infty, \infty)$.

Call λ the *real log canonical threshold* of $(I; \varphi)$ on Ω .

• RLCT's are independent of the choice of generators f_1, \ldots, f_r for the ideal *I*.

- RLCT's are independent of the choice of generators f_1, \ldots, f_r for the ideal *I*.
- RLCT's are positive rational numbers. If $\lambda \neq \infty$, then $\lambda \in \mathbb{Q}, 0 < \lambda \leq d$ and $\theta \in \mathbb{Z}, 1 \leq \theta \leq d$.

- RLCT's are independent of the choice of generators f_1, \ldots, f_r for the ideal *I*.
- RLCT's are positive rational numbers.
 If $\lambda \neq \infty$, then $\lambda \in \mathbb{Q}, 0 < \lambda \leq d$ and $\theta \in \mathbb{Z}, 1 \leq \theta \leq d$.
- RLCT's are ordered.

Define $(\lambda_1, \theta_1) < (\lambda_2, \theta_2)$ if $\lambda_1 < \lambda_2$, or $\lambda_1 = \lambda_2$ and $\theta_1 > \theta_2$.

- RLCT's are independent of the choice of generators f_1, \ldots, f_r for the ideal *I*.
- RLCT's are positive rational numbers. If $\lambda \neq \infty$, then $\lambda \in \mathbb{Q}, 0 < \lambda \leq d$ and $\theta \in \mathbb{Z}, 1 \leq \theta \leq d$.
- RLCT's are ordered.

Define $(\lambda_1, \theta_1) < (\lambda_2, \theta_2)$ if $\lambda_1 < \lambda_2$, or $\lambda_1 = \lambda_2$ and $\theta_1 > \theta_2$.

RLCT's are local in nature.

$$\operatorname{RLCT}_{\Omega}(I;\varphi) = \min_{x \in \mathcal{V}(I)} \operatorname{RLCT}_{\Omega_x}(I;\Omega)$$

where each Ω_x is a sufficiently small nbhd of x in Ω .

Local Properties

Because RLCT's are local, we will now assume:

- Ω_0 a sufficiently small neighborhood of the origin
- *I* an ideal of real analytic functions at the origin
- φ a nearly analytic function at the origin

Local Properties

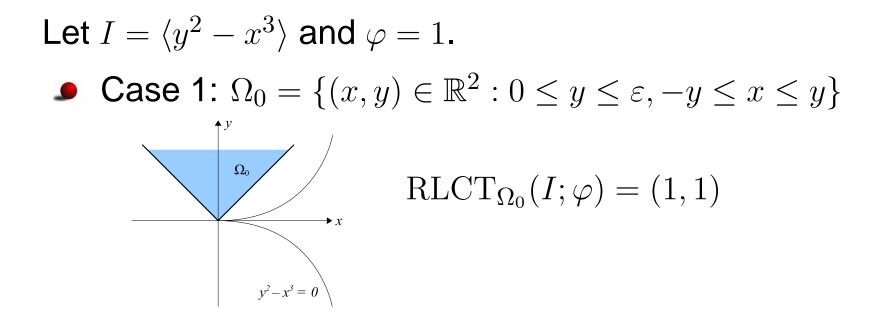
Because RLCT's are local, we will now assume:

- Ω_0 a sufficiently small neighborhood of the origin
- *I* an ideal of real analytic functions at the origin
- φ a nearly analytic function at the origin

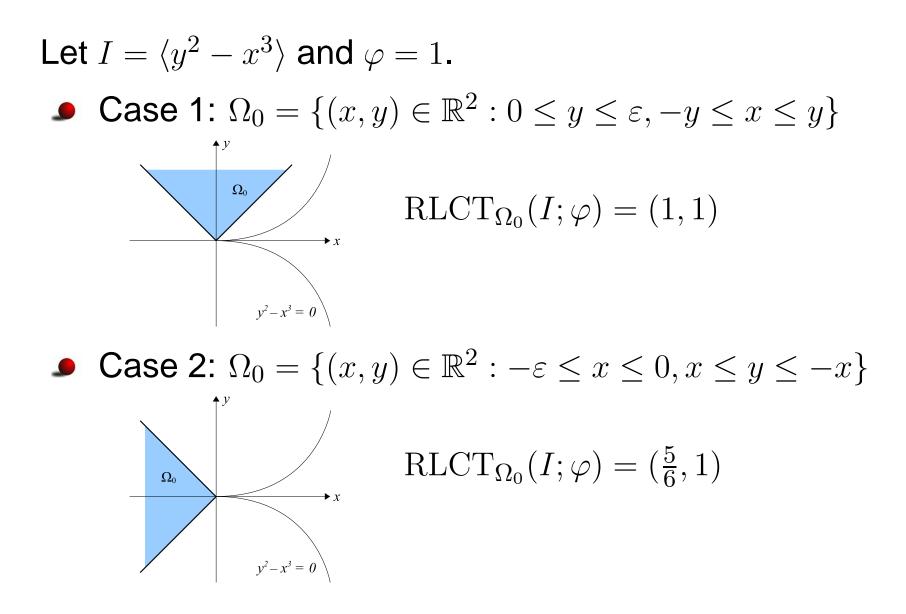
Important local properties:

- RLCT's depend on the boundary structure of Ω_0 .
- Formula for disjoint variables
- Formula for change of variables.

Example: Boundary Structure



Example: Boundary Structure



Disjoint Variables

Suppose we have disjoint sets of variables $x = (x_1, \dots, x_m) \qquad y = (y_1, \dots, y_n)$ $I_x = \langle f_1(x), \dots, f_r(x) \rangle \qquad I_y = \langle g_1(y), \dots, g_s(y) \rangle$ $(\lambda_x, \theta_x) = \text{RLCT}_{X_0}(I_x; \varphi_x) \quad (\lambda_y, \theta_y) = \text{RLCT}_{Y_0}(I_y; \varphi_y)$

• Recall $I_x + I_y = \langle f_i, g_j \text{ for all } i, j \rangle$, $I_x I_y = \langle f_i g_j \text{ for all } i, j \rangle$

Disjoint Variables

- Suppose we have disjoint sets of variables $x = (x_1, \dots, x_m)$ $y = (y_1, \dots, y_n)$ $I_x = \langle f_1(x), \dots, f_r(x) \rangle$ $I_y = \langle g_1(y), \dots, g_s(y) \rangle$ $(\lambda_x, \theta_x) = \operatorname{RLCT}_{X_0}(I_x; \varphi_x)$ $(\lambda_y, \theta_y) = \operatorname{RLCT}_{Y_0}(I_y; \varphi_y)$
- Recall $I_x + I_y = \langle f_i, g_j \text{ for all } i, j \rangle$, $I_x I_y = \langle f_i g_j \text{ for all } i, j \rangle$

Proposition

$$\operatorname{RLCT}_{X_0 \times Y_0}(I_x + I_y; \varphi_x \varphi_y) = (\lambda_x + \lambda_y, \theta_x + \theta_y - 1)$$

$$\operatorname{RLCT}_{X_0 \times Y_0}(I_x I_y; \varphi_x \varphi_y) = \begin{cases} (\lambda_x, \theta_x) & \text{if } \lambda_x < \lambda_y \\ (\lambda_y, \theta_y) & \text{if } \lambda_x > \lambda_y \\ (\lambda_x, \theta_x + \theta_y) & \text{if } \lambda_x = \lambda_y \end{cases}$$

Change of Variables

$$I = \langle f_1, \dots, f_r \rangle$$

• ρ change of variables outside $\mathcal{V}(I)$

i.e. $\rho: M \to W$ is a proper real analytic map from a manifold M to a neighborhood W of the origin that is an isomorphism on $M \setminus \rho^{-1}(\mathcal{V}(I))$

•
$$\rho^*I = \langle f_1 \circ \rho, \dots, f_r \circ \rho \rangle, \mathcal{M} = \rho^{-1}(\Omega_0)$$

Change of Variables

$$I = \langle f_1, \ldots, f_r \rangle$$

• ρ change of variables outside $\mathcal{V}(I)$

i.e. $\rho: M \to W$ is a proper real analytic map from a manifold M to a neighborhood W of the origin that is an isomorphism on $M \setminus \rho^{-1}(\mathcal{V}(I))$

•
$$\rho^*I = \langle f_1 \circ \rho, \dots, f_r \circ \rho \rangle, \mathcal{M} = \rho^{-1}(\Omega_0)$$

Proposition

$$\operatorname{RLCT}_{\Omega_0}(I;\varphi) = \min_{y \in \rho^{-1}(0)} \operatorname{RLCT}_{\mathcal{M}_y}(\rho^*I; (\varphi \circ \rho)|\rho'|)$$

Newton Polyhedra

Newton Polyhedra

• $\omega_1, \ldots, \omega_d$ local coordinates at the origin *I* an ideal of real analytic functions at the origin Each $f \in I$ has a power series expansion $\sum_{\alpha} c_{\alpha} \omega^{\alpha}$.

Newton Polyhedra

- $\omega_1, \ldots, \omega_d$ local coordinates at the origin *I* an ideal of real analytic functions at the origin Each $f \in I$ has a power series expansion $\sum_{\alpha} c_{\alpha} \omega^{\alpha}$.
- The Newton polyhedron of *I* is the convex hull $\Gamma(I) = \operatorname{conv}\{\alpha + \alpha' : \sum c_{\alpha}\omega^{\alpha} \in I, c_{\alpha} \neq 0, \alpha' \in \mathbb{R}^{d}_{\geq 0}\}$

Newton Polyhedra

- $\omega_1, \ldots, \omega_d$ local coordinates at the origin *I* an ideal of real analytic functions at the origin Each $f \in I$ has a power series expansion $\sum_{\alpha} c_{\alpha} \omega^{\alpha}$.
- The Newton polyhedron of *I* is the convex hull $\Gamma(I) = \operatorname{conv}\{\alpha + \alpha' : \sum c_{\alpha}\omega^{\alpha} \in I, c_{\alpha} \neq 0, \alpha' \in \mathbb{R}^{d}_{\geq 0}\}$
- $\tau = (\tau_1, \dots, \tau_d)$ vector of non-negative integers The *distance* l_{τ} is the smallest t such that $t \cdot (\tau_1 + 1, \dots, \tau_d + 1) \in \Gamma(I)$

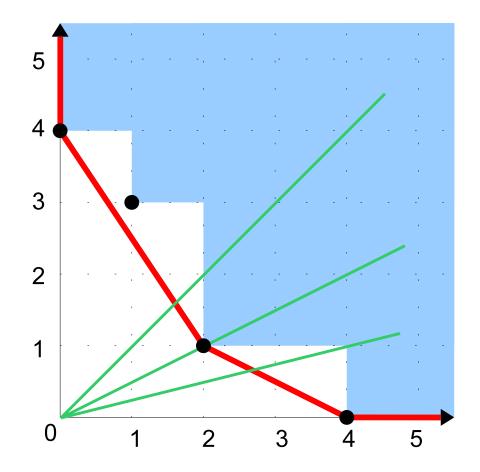
The *multiplicity* θ_{τ} is the codimension of the face of $\Gamma(I)$ at this intersection.

Example: Newton Polyhedra

$$I = \langle x^4 + x^2y + xy^3 + y^4 \rangle$$
$$J = \langle x^4, x^2y, xy^3, y^4 \rangle$$

Both I,J have the same Newton polyhedron.

$$l_{(0,0)} = \frac{8}{5}, \theta_{(0,0)} = 1$$
$$l_{(1,0)} = 1, \theta_{(1,0)} = 2$$
$$l_{(3,0)} = \frac{2}{3}, \theta_{(3,0)} = 1$$



Relation to RLCT

Theorem (L.)

Suppose the origin is not on the boundary of $\Omega.$

Then, when φ is a monomial function ω^{τ} ,

$\operatorname{RLCT}_{\Omega_0}(I;\omega^{\tau}) \leq (1/l_{\tau},\theta_{\tau}).$

Equality holds when *I* is a monomial ideal.

Relation to RLCT

Theorem (L.)

Suppose the origin is not on the boundary of Ω .

Then, when φ is a monomial function ω^{τ} ,

 $\operatorname{RLCT}_{\Omega_0}(I;\omega^{\tau}) \leq (1/l_{\tau},\theta_{\tau}).$

Equality holds when *I* is a monomial ideal.

Remark

Equality also holds for ideals which are *nondegenerate* (a term due to Varchenko).

Back to Schizophrenic Patients

Learning Coefficients

 $P = (p_{ij}), S_i = \{ \text{rank } i \text{ matrices} \}$ $S_{21} = \{ p_{11} = 0; p_{12}, p_{21}, p_{22} \text{ non-zero; up to perm} \} \subset S_2$ $S_{22} = \{ p_{11} = p_{22} = 0; p_{12}, p_{21} \text{ non-zero; up to perm} \} \subset S_2$

Theorem (L.)

The learning coefficient (λ, θ) of the model is

$$(\lambda, \theta) = \begin{cases} (5/2, 1) & \text{if } P \in S_1, \\ (7/2, 1) & \text{if } P \in S_2 \setminus (S_{21} \cup S_{22}), \\ (4, 1) & \text{if } P \in S_{21} \setminus S_{22}, \\ (9/2, 1) & \text{if } P \in S_{22}. \end{cases}$$

Recall $p_{ij}(t, a, b, c, d) = ta_i b_j + (1 - t)c_j d_j$. Consider $t^* = \frac{1}{2}$ and $a^* = b^* = c^* = d^* = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$. Denote $\omega = (t, a, b, c, d)$ and $\omega^* = (t^*, a^*, b^*, c^*, d^*)$.

Let $I = \langle p_{ij}(\omega + \omega^*) - p_{ij}(\omega^*) \rangle$ and $\varphi = 1$. We want to find $\operatorname{RLCT}_{\Omega_{\omega^*}}(I; \varphi)$.

Note that ω^* is not on the boundary of Ω .

Now, $\varphi = 1$ and I is generated by

 $p_{ij}(\omega + \omega^*) - p_{ij}(\omega^*)$ for all $i, j \in \{1, 2, 3\}$

Now, $\varphi = 1$ and *I* is generated by $p_{ij}(\omega + \omega^*) - p_{ij}(\omega^*)$ for all $i, j \in \{1, 2, 3\}$

Note that

$$p_{i1} + p_{i2} + p_{i3} = ta_i + tc_i =: p_{i0}$$
$$p_{1j} + p_{2j} + p_{3j} = tb_j + td_j =: p_{0j}$$

Let $g_{ij}(\omega)$ denote $p_{ij}(\omega + \omega^*) - p_{ij}(\omega^*)$.

Now, $\varphi = 1$ and I is generated by

 $g_{ij}(\omega)$ for all $i, j \in \{0, 1, 2\}$

Now, $\varphi = 1$ and *I* is generated by $g_{ij}(\omega)$ for all $i, j \in \{0, 1, 2\}$

For $i, j \in \{1, 2\}$, we replace $g_{ij}(\omega)$ with $g_{ij}(\omega) - (d_j + d_j^*)g_{i0}(\omega) - (a_i + a_i^*)g_{0j}(\omega)$

Now, $\varphi = 1$ and I is generated by

 $g_{01}(\omega)$ $g_{02}(\omega)$ $g_{10}(\omega)$ $g_{20}(\omega)$ $g_{11}(\omega) - (d_1 + d_1^*)g_{10}(\omega) - (a_1 + a_1^*)g_{01}(\omega)$ $g_{12}(\omega) - (d_2 + d_2^*)g_{10}(\omega) - (a_1 + a_1^*)g_{02}(\omega)$ $g_{21}(\omega) - (d_1 + d_1^*)g_{20}(\omega) - (a_2 + a_2^*)g_{01}(\omega)$ $g_{22}(\omega) - (d_2 + d_2^*)g_{20}(\omega) - (a_2 + a_2^*)g_{02}(\omega)$

Now, $\varphi = 1$ and I is generated by

 $g_{01}(\omega)$ $g_{02}(\omega)$ $g_{10}(\omega)$ $g_{20}(\omega)$ $g_{11}(\omega) - (d_1 + d_1^*)g_{10}(\omega) - (a_1 + a_1^*)g_{01}(\omega)$ $g_{12}(\omega) - (d_2 + d_2^*)g_{10}(\omega) - (a_1 + a_1^*)g_{02}(\omega)$ $g_{21}(\omega) - (d_1 + d_1^*)g_{20}(\omega) - (a_2 + a_2^*)g_{01}(\omega)$ $g_{22}(\omega) - (d_2 + d_2^*)g_{20}(\omega) - (a_2 + a_2^*)g_{02}(\omega)$

Expanding these polynomials, we get...

Now, $\varphi = 1$ and I is generated by

$$c_{1}(\frac{1}{2} - t) + a_{1}(t + \frac{1}{2})$$

$$c_{2}(\frac{1}{2} - t) + a_{2}(t + \frac{1}{2})$$

$$d_{1}(\frac{1}{2} - t) + b_{1}(t + \frac{1}{2})$$

$$d_{2}(\frac{1}{2} - t) + b_{2}(t + \frac{1}{2})$$

$$a_{1}d_{1}$$

$$a_{1}d_{2}$$

$$a_{2}d_{1}$$

$$a_{2}d_{2}$$

Now, $\varphi = 1$ and I is generated by

$$c_{1}(\frac{1}{2} - t) + a_{1}(t + \frac{1}{2})$$

$$c_{2}(\frac{1}{2} - t) + a_{2}(t + \frac{1}{2})$$

$$d_{1}(\frac{1}{2} - t) + b_{1}(t + \frac{1}{2})$$

$$d_{2}(\frac{1}{2} - t) + b_{2}(t + \frac{1}{2})$$

$$a_{1}d_{1}$$

$$a_{1}d_{2}$$

$$a_{2}d_{1}$$

$$a_{2}d_{2}$$

Substitute
$$b_i = \frac{b'_i - d_i(\frac{1}{2} - t)}{t + \frac{1}{2}}$$
, $c_i = \frac{c'_i - a_i(t + \frac{1}{2})}{\frac{1}{2} - t}$.
The Jacobian determinant of this change of variable is 16.

Now, $\varphi = 16$ and I is generated by

 $c'_1, c'_2, b'_1, b'_2, a_1d_1, a_1d_2, a_2d_1, a_2d_2$

Now, $\varphi=16$ and I is generated by

 $c'_1, c'_2, b'_1, b'_2, a_1d_1, a_1d_2, a_2d_1, a_2d_2$

This is a monomial ideal so we may use the Newton polyhedra method to compute its RLCT.

Alternatively, we can apply the formula for disjoint variables. $I = \langle c'_1 \rangle + \langle c'_2 \rangle + \langle b'_1 \rangle + \langle b'_2 \rangle + (\langle a_1 \rangle + \langle a_2 \rangle) (\langle d_1 \rangle + \langle d_2 \rangle)$

Now, $\varphi=16$ and I is generated by

 $c'_1, c'_2, b'_1, b'_2, a_1d_1, a_1d_2, a_2d_1, a_2d_2$

This is a monomial ideal so we may use the Newton polyhedra method to compute its RLCT.

Alternatively, we can apply the formula for disjoint variables. $I = \langle c'_1 \rangle + \langle c'_2 \rangle + \langle b'_1 \rangle + \langle b'_2 \rangle + (\langle a_1 \rangle + \langle a_2 \rangle) (\langle d_1 \rangle + \langle d_2 \rangle)$

Conclusion: RLCT_{Ω_{ω^*}} $(I; \varphi) = (6, 2)$

Take Home

- 1. When computing learning coefficients, work with RLCT of *ideals* not *functions*.
- 2. Newton polyhedra methods can be extended to work with monomial *amplitude functions*.

Open Questions:

- 1. The RLCT over Ω is the minimum of RLCT's at $x \in \Omega$. How do we identify points with the minimum RLCT?
- 2. Is there a way to extend Newton polyhedra methods to cases where the origin is on the boundary of Ω ?

Thank you for your kind attention :)

References

- 1. V. I. Arnol'd, S. M. Guseĭn-Zade and A. N. Varchenko: *Singularities of Differentiable Maps*, Vol. II, Birkhäuser, Boston, 1985.
- 2. M. Evans, Z. Gilula and I. Guttman: Latent class analysis of two-way contingency tables by Bayesian methods, *Biometrika* **76** (1989) 557–563.
- 3. H. Hironaka: Resolution of singularities of an algebraic variety over a field of characteristic zero I, II, *Ann. of Math.* (2) **79** (1964) 109–203.
- 4. S. Lin, B. Sturmfels and Z. Xu: Marginal likelihood integrals for mixtures of independence models, *J. Mach. Learn. Res.* **10** (2009) 1611–1631.
- 5. S. Lin: Asymptotic Approximation of Marginal Likelihood Integrals, in preparation.
- 6. S. Watanabe: *Algebraic Geometry and Statistical Learning Theory*, Cambridge Monographs on Applied and Computational Mathematics **25**, Cambridge University Press, Cambridge, 2009.