
Asymptotic Approximation of
Marginal Likelihood Integrals

Shaowei Lin

shaowei@math.berkeley.edu

28 Mar 2010, University of Kentucky, Lexington



A Statistical Example



132 Schizophrenic Patients

Evans-Gilula-Guttman(1989) studied schizophrenic
patients for connections between recovery time
(in years Y ) and frequency of visits by relatives.

2≤Y <10 10≤Y <20 20≤Y Totals

Regularly 43 16 3 62

Rarely 6 11 10 27

Never 9 18 16 43

Totals 58 45 29 132

Proposed two statistical models to explain the data.
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Model 1: Independence Model
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Regularly a1b1 a1b2 a1b3

Rarely a2b1 a2b2 a2b3

Never a3b1 a3b2 a3b3



132 Schizophrenic Patients

Model 1: Independence Model

2≤Y <10 10≤Y <20 20≤Y

Regularly a1b1 a1b2 a1b3

Rarely a2b1 a2b2 a2b3

Never a3b1 a3b2 a3b3

Model 2: Hidden Variable Model

2≤Y <10 10≤Y <20 20≤Y

Regularly ta1b1 + (1 − t)c1d1 ta1b2 + (1 − t)c1d2 ta1b3 + (1 − t)c1d3

Rarely ta2b1 + (1 − t)c2d1 ta2b2 + (1 − t)c2d2 ta2b3 + (1 − t)c2d3

Never ta3b1 + (1 − t)c3d1 ta3b2 + (1 − t)c3d2 ta3b3 + (1 − t)c3d3



Marginal Likelihood Integrals

In Bayesian statistics, models are selected by
comparing marginal likelihood integrals.

Z =

∫

Ω

∏

i,j

pij(ω)Uij ϕ(ω)dω

Uij the data, Ω parameter space
pij(ω) functions parametrizing the model
ϕ(ω) prior belief about parameter space



Marginal Likelihood Integrals

In Bayesian statistics, models are selected by
comparing marginal likelihood integrals.

Z =

∫

Ω

∏

i,j

pij(ω)Uij ϕ(ω)dω

Uij the data, Ω parameter space
pij(ω) functions parametrizing the model
ϕ(ω) prior belief about parameter space

e.g. for the first model,

Z1 =

∫

∆2

∫

∆2

a62
1 a27

2 a43
3 b58

1 b45
2 b29

3 da db

a = (a1, a2, a3), b = (b1, b2, b3)

∆2 = {(x1, x2, x3) ∈ R3 : xi ≥ 0,
∑

i xi = 1}



Asymptotic Approximation

In general, we want to compute

Z(n) =

∫

Ω

k
∏

i=1

pi(ω)nqi |ϕ(ω)|dω

n sample size
Ω compact and semianalytic

i.e. Ω = {ω ∈ Rd : g1 ≥ 0, . . . , gl ≥ 0}, gi real analytic on Rd

ϕ nearly analytic
i.e. ϕ = ϕsϕa, ϕs positive and smooth, ϕa real analytic on Ω

pi positive real analytic functions on Ω summing to 1
q true distribution with q = p(ω∗) for some ω∗ ∈ Ω



Asymptotic Approximation

In general, we want to compute

Z(n) =

∫

Ω

k
∏

i=1

pi(ω)nqi |ϕ(ω)|dω

L.-Sturmfels-Xu(2008) gave efficient algorithms for
computing Z(n) exactly for small samples n.



Asymptotic Approximation

In general, we want to compute

Z(n) =

∫

Ω

k
∏

i=1

pi(ω)nqi |ϕ(ω)|dω

L.-Sturmfels-Xu(2008) gave efficient algorithms for
computing Z(n) exactly for small samples n.

Asymptotically , as n → ∞,

Z(n) ≈ (
∏k

i=1 qqi

i )n · Cn−λ(log n)θ−1

In this talk, we want to compute (λ, θ).
In machine learning, λ is called the learning coefficient
of the statistical model and θ its multiplicity .



Statistical Learning Theory
and Singularity Theory



Statistical Learning Theory

Define Q(ω) = ‖p(ω) − q‖2 =
∑k

i=1

(

pi(ω) − qi

)2.

Theorem (Watanabe)

If (λ, θ) is the learning coefficient and its multiplicity,
then asymptotically

∫

Ω
e−nQ(ω)|ϕ(ω)|dω ≈ Cn−λ(log n)θ−1

for some constant C.



Singularity Theory

Theorem (Arnold-Gusein·Zade-Varchenko)

Let f be a real analytic function on Ω with f(ω∗) = 0
for some ω∗ ∈ Ω. If we have asymptotics

Z(n) =

∫

Ω
e−n|f(ω)||ϕ(ω)|dω ≈ Cn−λ(log n)θ−1,

then λ is the smallest pole of the zeta function

ζ(z) =

∫

Ω
|f(ω)|−z|ϕ(ω)|dω, z ∈ C

and θ is the multiplicity of this pole.



Example: Monomial Functions

Let f = ωκ1

1 · · ·ωκd

d , ϕ = ωτ1

1 · · ·ωτd

d and Ω = [0, ε]d.
∫

[0,ε]d
e−nωκ

ωτdω = Cn−λ(log n)θ−1



Example: Monomial Functions

Let f = ωκ1

1 · · ·ωκd

d , ϕ = ωτ1

1 · · ·ωτd

d and Ω = [0, ε]d.
∫

[0,ε]d
e−nωκ

ωτdω = Cn−λ(log n)θ−1

To find (λ, θ), we study the zeta function
∫

Ω
ω−κz+τdω =

[ ω−κ1z+τ1+1
1

−κ1z + τ1 + 1

]ε

0
· · ·

[ ω−κdz+τd+1
d

−κdz + τd + 1

]ε

0



Example: Monomial Functions

Let f = ωκ1

1 · · ·ωκd

d , ϕ = ωτ1

1 · · ·ωτd

d and Ω = [0, ε]d.
∫

[0,ε]d
e−nωκ

ωτdω = Cn−λ(log n)θ−1

To find (λ, θ), we study the zeta function
∫

Ω
ω−κz+τdω =

[ ω−κ1z+τ1+1
1

−κ1z + τ1 + 1

]ε

0
· · ·

[ ω−κdz+τd+1
d

−κdz + τd + 1

]ε

0

Thus, λ = min
i

{τi + 1

κi

}

, θ = # min
i

{τi + 1

κi

}

where # min S is the number of times
the minimum is attained in a set S.



Resolution of Singularities

Theorem (Hironaka)

Let f be a real analytic function at the origin with f(0) = 0.

Then, there exists a manifold M , a neighborhood W of the

origin and a proper real analytic map ρ : M → W such that

ρ is an isomorphism on M \ (f ◦ ρ)−1(0)

f ◦ ρ and |ρ′| are monomial functions

locally at each y ∈ (f ◦ ρ)−1(0)



Resolution of Singularities

Theorem (Hironaka)

Let f be a real analytic function at the origin with f(0) = 0.

Then, there exists a manifold M , a neighborhood W of the

origin and a proper real analytic map ρ : M → W such that

ρ is an isomorphism on M \ (f ◦ ρ)−1(0)

f ◦ ρ and |ρ′| are monomial functions

locally at each y ∈ (f ◦ ρ)−1(0)

Thus, we can find the poles of the zeta function of any f ,

provided we have a resolution of singularities for f .

Finding resolutions is generally a hard problem.





Real Log Canonical Thresholds
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Ω ⊂ Rd compact semianalytic subset
AΩ ring of real analytic functions on Ω
I = 〈f1, . . . , fr〉 ⊂ AΩ, ϕ nearly analytic



Real Log Canonical Thresholds

Ω ⊂ Rd compact semianalytic subset
AΩ ring of real analytic functions on Ω
I = 〈f1, . . . , fr〉 ⊂ AΩ, ϕ nearly analytic

Consider the zeta function

ζ(z) =

∫

Ω

(

f1(ω)2 + · · · + fr(ω)2
)−z/2

|ϕ(ω)|dω



Real Log Canonical Thresholds

Ω ⊂ Rd compact semianalytic subset
AΩ ring of real analytic functions on Ω
I = 〈f1, . . . , fr〉 ⊂ AΩ, ϕ nearly analytic

Consider the zeta function

ζ(z) =

∫

Ω

(

f1(ω)2 + · · · + fr(ω)2
)−z/2

|ϕ(ω)|dω

Define RLCTΩ(I;ϕ) = (λ, θ) where λ is
the smallest pole of ζ(z) and θ its multiplicity.
If ζ(z) does not have any poles, set (λ, θ) = (∞,∞).

Call λ the real log canonical threshold of (I;ϕ) on Ω.



Fundamental Properties

RLCT’s are independent of the choice of
generators f1, . . . , fr for the ideal I.
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Fundamental Properties

RLCT’s are independent of the choice of
generators f1, . . . , fr for the ideal I.

RLCT’s are positive rational numbers.
If λ 6= ∞, then λ ∈ Q, 0 < λ ≤ d and θ ∈ Z, 1 ≤ θ ≤ d.

RLCT’s are ordered.
Define (λ1, θ1) < (λ2, θ2) if λ1 < λ2, or λ1 = λ2 and θ1 > θ2.

RLCT’s are local in nature.

RLCTΩ(I;ϕ) = min
x∈V(I)

RLCTΩx
(I; Ω)

where each Ωx is a sufficiently small nbhd of x in Ω.



Local Properties

Because RLCT’s are local, we will now assume:

Ω0 a sufficiently small neighborhood of the origin
I an ideal of real analytic functions at the origin
ϕ a nearly analytic function at the origin



Local Properties

Because RLCT’s are local, we will now assume:

Ω0 a sufficiently small neighborhood of the origin
I an ideal of real analytic functions at the origin
ϕ a nearly analytic function at the origin

Important local properties:

RLCT’s depend on the boundary structure of Ω0.

Formula for disjoint variables

Formula for change of variables.



Example: Boundary Structure

Let I = 〈y2 − x3〉 and ϕ = 1.

Case 1: Ω0 = {(x, y) ∈ R2 : 0 ≤ y ≤ ε,−y ≤ x ≤ y}

RLCTΩ0
(I;ϕ) = (1, 1)



Example: Boundary Structure

Let I = 〈y2 − x3〉 and ϕ = 1.

Case 1: Ω0 = {(x, y) ∈ R2 : 0 ≤ y ≤ ε,−y ≤ x ≤ y}

RLCTΩ0
(I;ϕ) = (1, 1)

Case 2: Ω0 = {(x, y) ∈ R2 : −ε ≤ x ≤ 0, x ≤ y ≤ −x}

RLCTΩ0
(I;ϕ) = (5

6 , 1)



Disjoint Variables

Suppose we have disjoint sets of variables
x = (x1, . . . , xm) y = (y1, . . . , yn)

Ix = 〈f1(x), . . . , fr(x)〉 Iy = 〈g1(y), . . . , gs(y)〉

(λx, θx) = RLCTX0
(Ix;ϕx) (λy, θy) = RLCTY0

(Iy;ϕy)

Recall Ix+Iy = 〈fi, gj for all i, j〉, IxIy = 〈figj for all i, j〉



Disjoint Variables

Suppose we have disjoint sets of variables
x = (x1, . . . , xm) y = (y1, . . . , yn)

Ix = 〈f1(x), . . . , fr(x)〉 Iy = 〈g1(y), . . . , gs(y)〉

(λx, θx) = RLCTX0
(Ix;ϕx) (λy, θy) = RLCTY0

(Iy;ϕy)

Recall Ix+Iy = 〈fi, gj for all i, j〉, IxIy = 〈figj for all i, j〉

Proposition

RLCTX0×Y0
(Ix+Iy;ϕxϕy) = (λx + λy, θx + θy − 1)

RLCTX0×Y0
(IxIy;ϕxϕy) =











(λx, θx) if λx < λy

(λy, θy) if λx > λy

(λx, θx + θy) if λx = λy



Change of Variables

I = 〈f1, . . . , fr〉

ρ change of variables outside V(I)

i.e. ρ : M → W is a proper real analytic map from
a manifold M to a neighborhood W of the origin
that is an isomorphism on M \ ρ−1(V(I))

ρ∗I = 〈f1 ◦ ρ, . . . , fr ◦ ρ〉, M = ρ−1(Ω0)



Change of Variables

I = 〈f1, . . . , fr〉

ρ change of variables outside V(I)

i.e. ρ : M → W is a proper real analytic map from
a manifold M to a neighborhood W of the origin
that is an isomorphism on M \ ρ−1(V(I))

ρ∗I = 〈f1 ◦ ρ, . . . , fr ◦ ρ〉, M = ρ−1(Ω0)

Proposition

RLCTΩ0
(I;ϕ) = min

y∈ρ−1(0)
RLCTMy

(ρ∗I; (ϕ ◦ ρ)|ρ′|)



Newton Polyhedra



Newton Polyhedra

ω1, . . . , ωd local coordinates at the origin
I an ideal of real analytic functions at the origin

Each f ∈ I has a power series expansion
∑

α cαωα.
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∑

cαωα ∈ I, cα 6= 0, α′ ∈ Rd
≥0}



Newton Polyhedra

ω1, . . . , ωd local coordinates at the origin
I an ideal of real analytic functions at the origin

Each f ∈ I has a power series expansion
∑

α cαωα.

The Newton polyhedron of I is the convex hull

Γ(I) = conv{α + α′ :
∑

cαωα ∈ I, cα 6= 0, α′ ∈ Rd
≥0}

τ = (τ1, . . . , τd) vector of non-negative integers

The distance lτ is the smallest t such that
t · (τ1 + 1, . . . , τd + 1) ∈ Γ(I)

The multiplicity θτ is the codimension
of the face of Γ(I) at this intersection.



Example: Newton Polyhedra

I = 〈x4 + x2y + xy3 + y4〉

J = 〈x4, x2y, xy3, y4〉

Both I,J have the same
Newton polyhedron.

l(0,0) = 8
5 , θ(0,0) = 1

l(1,0) = 1, θ(1,0) = 2

l(3,0) = 2
3 , θ(3,0) = 1



Relation to RLCT

Theorem (L.)

Suppose the origin is not on the boundary of Ω.

Then, when ϕ is a monomial function ωτ ,

RLCTΩ0
(I;ωτ ) ≤ (1/lτ , θτ ).

Equality holds when I is a monomial ideal.



Relation to RLCT

Theorem (L.)

Suppose the origin is not on the boundary of Ω.

Then, when ϕ is a monomial function ωτ ,

RLCTΩ0
(I;ωτ ) ≤ (1/lτ , θτ ).

Equality holds when I is a monomial ideal.

Remark

Equality also holds for ideals which are
nondegenerate (a term due to Varchenko).



Back to Schizophrenic Patients



Learning Coefficients

P = (pij), Si = {rank i matrices}
S21 = {p11 = 0; p12, p21, p22 non-zero; up to perm} ⊂ S2

S22 = {p11 = p22 = 0; p12, p21 non-zero; up to perm} ⊂ S2

Theorem (L.)

The learning coefficient (λ, θ) of the model is

(λ, θ) =



















(5/2, 1) if P ∈ S1,

(7/2, 1) if P ∈ S2 \ (S21 ∪ S22),

(4, 1) if P ∈ S21 \ S22,

(9/2, 1) if P ∈ S22.



Computation

Recall pij(t, a, b, c, d) = taibj + (1 − t)cjdj.
Consider t∗ = 1

2 and a∗ = b∗ = c∗ = d∗ = (1
3 , 1

3 , 1
3).

Denote ω = (t, a, b, c, d) and ω∗ = (t∗, a∗, b∗, c∗, d∗).

Let I = 〈pij(ω + ω∗) − pij(ω
∗)〉 and ϕ = 1.

We want to find RLCTΩω∗
(I;ϕ).

Note that ω∗ is not on the boundary of Ω.



Computation

Now, ϕ = 1 and I is generated by

pij(ω + ω∗) − pij(ω
∗) for all i, j ∈ {1, 2, 3}



Computation

Now, ϕ = 1 and I is generated by

pij(ω + ω∗) − pij(ω
∗) for all i, j ∈ {1, 2, 3}

Note that

pi1 + pi2 + pi3 = tai + tci =: pi0

p1j + p2j + p3j = tbj + tdj =: p0j

Let gij(ω) denote pij(ω + ω∗) − pij(ω
∗).



Computation

Now, ϕ = 1 and I is generated by

gij(ω) for all i, j ∈ {0, 1, 2}



Computation

Now, ϕ = 1 and I is generated by

gij(ω) for all i, j ∈ {0, 1, 2}

For i, j ∈ {1, 2}, we replace gij(ω) with

gij(ω) − (dj + d∗

j )gi0(ω) − (ai + a∗

i )g0j(ω)



Computation

Now, ϕ = 1 and I is generated by

g01(ω)

g02(ω)

g10(ω)

g20(ω)

g11(ω) − (d1 + d∗

1)g10(ω) − (a1 + a∗

1)g01(ω)

g12(ω) − (d2 + d∗

2)g10(ω) − (a1 + a∗

1)g02(ω)

g21(ω) − (d1 + d∗

1)g20(ω) − (a2 + a∗

2)g01(ω)

g22(ω) − (d2 + d∗

2)g20(ω) − (a2 + a∗

2)g02(ω)



Computation

Now, ϕ = 1 and I is generated by

g01(ω)

g02(ω)

g10(ω)

g20(ω)

g11(ω) − (d1 + d∗

1)g10(ω) − (a1 + a∗

1)g01(ω)

g12(ω) − (d2 + d∗

2)g10(ω) − (a1 + a∗

1)g02(ω)

g21(ω) − (d1 + d∗

1)g20(ω) − (a2 + a∗

2)g01(ω)

g22(ω) − (d2 + d∗

2)g20(ω) − (a2 + a∗

2)g02(ω)

Expanding these polynomials, we get...



Computation

Now, ϕ = 1 and I is generated by

c1(
1
2 − t) + a1(t + 1

2 )

c2(
1
2 − t) + a2(t + 1

2 )

d1(
1
2 − t) + b1(t + 1

2 )

d2(
1
2 − t) + b2(t + 1

2 )

a1d1

a1d2

a2d1

a2d2



Computation

Now, ϕ = 1 and I is generated by

c1(
1
2 − t) + a1(t + 1

2 )

c2(
1
2 − t) + a2(t + 1

2 )

d1(
1
2 − t) + b1(t + 1

2 )

d2(
1
2 − t) + b2(t + 1

2 )

a1d1

a1d2

a2d1

a2d2

Substitute bi =
b′i−di(

1

2
−t)

t+ 1

2

, ci =
c′i−ai(t+

1

2
)

1

2
−t

.

The Jacobian determinant of this change of variable is 16.



Computation

Now, ϕ = 16 and I is generated by

c′1, c
′

2, b
′

1, b
′

2, a1d1, a1d2, a2d1, a2d2



Computation

Now, ϕ = 16 and I is generated by

c′1, c
′

2, b
′

1, b
′

2, a1d1, a1d2, a2d1, a2d2

This is a monomial ideal so we may use the Newton
polyhedra method to compute its RLCT.

Alternatively, we can apply the formula for disjoint variables.

I = 〈c′1〉 + 〈c′2〉 + 〈b′1〉 + 〈b′2〉 +
(

〈a1〉 + 〈a2〉
)(

〈d1〉 + 〈d2〉
)



Computation

Now, ϕ = 16 and I is generated by

c′1, c
′

2, b
′

1, b
′

2, a1d1, a1d2, a2d1, a2d2

This is a monomial ideal so we may use the Newton
polyhedra method to compute its RLCT.

Alternatively, we can apply the formula for disjoint variables.

I = 〈c′1〉 + 〈c′2〉 + 〈b′1〉 + 〈b′2〉 +
(

〈a1〉 + 〈a2〉
)(

〈d1〉 + 〈d2〉
)

Conclusion: RLCTΩω∗
(I;ϕ) = (6, 2)



Take Home

1. When computing learning coefficients,
work with RLCT of ideals not functions.

2. Newton polyhedra methods can be extended to
work with monomial amplitude functions.

Open Questions:

1. The RLCT over Ω is the minimum of RLCT’s at x ∈ Ω.
How do we identify points with the minimum RLCT?

2. Is there a way to extend Newton polyhedra methods
to cases where the origin is on the boundary of Ω?



Thank you for your kind attention :)
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